
OS-9/IFF
SUPPORT LIBRARY

REPRODUCTION NOTICE

The software described in this document is intended to be used on a single computer system. OptImage

expressly prohibits any reproduction of the software on tape, disk, or any other medium except for

backup purposes. Distribution of this software, in part or whole, to any other party or on any other

system may constitute copyright infringements and misappropriation of trade secrets and confidential

processes which are the property of OptImage and/or other parties. Unauthorized distribution of soft-

ware may cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have questions concerning the

above notice, the documentation, and/or software, please contact the OptImage representative in your

area.

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication, however,

OptImage will not be liable for any damages, including indirect or consequential, from the use of

OptImage-provided software or reliance on the accuracy of this documentation. The information con-

tained herein is subject to change without notice.

COPYRIGHT

Copyright 1992 OptImage Interactive Services Company, L.P. All Rights Reserved. Reproduction

of this document, in part or whole, by any means, electrical, mechanical, magnetic, optical, chemical,

manual or otherwise, is prohibited without written permission from OptImage Interactive Services

Company, L.P.

Publication Editor: Walden Miller & Steve McClellan

Publication date: December 10, 1992

Documentation Part Number: None

Revision B

TRADEMARKS

OS-9 is a trademark of Microware Systems Corporation.

OS-9/68000 is a trademark of Microware Systems Corporation.

CD-I is a trademark of N.V. Philips and Sony Corporation

OptImage Interactive Services Company, L.P.
1501 50th Street, Suite 100

West Des Moines, Iowa 50265-5961

Phone numbers: Online Information:
In the USA: 1 800 CDI-5484 Applelink® D6431

(515) 225-7000 America Online®, Keyword: OptImage
(515) 225-0252 FAX OptImage B.B.S. (515) 225-1933

In Europe: +31 (40) 73 6228
In Japan: (03) 3 665 9740

OS-9/IFF Support Library iii

Table
of

Contents

OS-9/Support Library C Functions

Introduction .. 1-1

iff_close() .. 1-2

iff_open() ... 1-3

iff_read_aiff() ... 1-4

iff_read_data() ... 1-4

iff_read_imag() .. 1-5

iff_read_what_next() .. 1-5

iff_seek() .. 1-6

iff_skip_data() ... 1-6

iff_write_aiff() .. 1-7

iff_write_data() .. 1-7

iff_write_end() ... 1-8

iff_write_imag() ... 1-8

CD-I IFF Specification: Version 0.99 6 January 1989

Preface ... 2-1

Introduction .. 2-3

IFF for CD-I .. 2-4

Data Definitions.. 2-5

Common Declarations .. 2-6

FORM & Chunk Definitions .. 2-7

IMAG (Image Header) Chunk .. 2-8

IPAR (Image Parameters) Chunk .. 2-10

PLTE (Palette) Chunk .. 2-11

YUVS (YUV Start Values) Chunk.. 2-12

Table of Contents OS-9/IFF Support Library

iv OS-9/IFF Support Library

USER (User-Defined Data) Chunk .. 2-13

IDAT (Image Data) Chunk ... 2-14

RGB888 .. 2-15

RGB555 .. 2-16

DYUV ... 2-17

CLUTn.. 2-18

RLn ... 2-19

PLTe ... 2-20

AIFF (audio) FORM ... 2-21

A Quick Introduction to IFF

Why IFF .. 3-1

What is IFF? ... 3-1

What’s The Trick?... 3-2

What’s An IFF File Look Like?.. 3-2

How To Read An IFF FIle? .. 3-4

File Extensibility .. 3-5

Advanced Topics: CAT, LIST, And PROP (not all that impartant 3-5

Hints of ILBM Files.. 3-6

CGA and EGA subtleties.. 3-7

"EA IFF 85" Standard For Interchange Format Files: August 1, 1987

Introduction .. 4-1

Standards are Good for Software Developers.. 4-1

Standards are Good for Software Users .. 4-1

Here is "EA IFF 1985" .. 4-2

References.. 4-3

Background for Designers.. 4-4

What Do We Need? ... 4-4

Think Ahead .. 4-5

Scope .. 4-5

Data Abstraction ... 4-5

Previous Work ... 4-6

Primitive Data Types ... 4-9

Alignment .. 4-9

Numbers .. 4-10

Dates .. 4-11

Type IDs... 4-11

Chunks... 4-12

Strings, String Chunks, and String Properties 4-13

Data Properties ... 4-13

Links .. 4-14

OS-9/IFF Support Library Table of Contents

OS-9/IFF Support Library v

File References .. 4-14

Data Sections .. 4-15

Group Form ... 4-15

Composite FORMs... 4-16

FTXT .. 4-17

ILBM .. 4-17

PICS ... 4-17

Other Macintosh Resource Types... 4-17

Designing New Data Sections... 4-17

LISTs, CATs and Shared Properties ... 4-20

Group CAT... 4-20

Group LIST.. 4-21

Group PROP .. 4-21

Properties For LIST .. 4-23

Standard File Structure ... 4-24

File Structure Overview.. 4-24

Single Purpose Files.. 4-24

Scrap Files ... 4-25

Rules For Reader Programs.. 4-26

Rules For Writer Programs .. 4-27

Appendix A: Reference .. 4-29

Type Definitions .. 4-29

Syntax Definitions... 4-30

Defined Chunk IDs.. 4-31

Support Software... 4-32

Example Diagrams.. 4-33

Appendix B: Standards Committee .. 4-35

Audio Interchange File Format: AIFF

Data Types .. 5-2

Constants ... 5-2

Data Organization... 5-3

Referring to Audio IFF.. 5-3

File Structure.. 5-4

Local Chunk Types ... 5-7

Common Chunk... 5-8

Sound Data Chunk.. 5-10

Sample Points .. 5-11

Sample Frames .. 5-11

Block Aligning Sound Data ... 5-11

Marker Chunk ... 5-13

Markers .. 5-13

Marker Chunk Format .. 5-14

Table of Contents OS-9/IFF Support Library

vi OS-9/IFF Support Library

Instrument Chunk .. 5-15

Looping ... 5-15

Instrument Chunk Format ... 5-16

MIDI Data Chunk ... 5-18

Audio Recording Chunk.. 5-19

Application Specific Chunk .. 5-20

Comments Chunk.. 5-21

Comment .. 5-21

Comment Chunk Format .. 5-22

Text Chunks - Name, Author, Copyright, Annotation............................ 5-23

Name Chunk .. 5-23

Author Chunk .. 5-23

Copyright Chunk ... 5-23

Annotation Chunk ... 5-24

Chunk Precedence .. 5-25

Appendix A: An Example .. 5-26

Appendix B: Sending Comments to Apple Computer, Inc. 5-27

Appendix C: References... 5-28

Revision Log

OS-9/IFF Support Library 1-1

Introduction

The OS-9/IFF Support Library provides a relativly simple method for reading and writing

correct IFF formated data. Developers are encouraged to use these libraries to help main-

tain compatibility among different implementations of IFF reader/writer code.

The OS-9/IFF Support Library is provided in source code format to aid tool developers con-

form to the 0.99 CD-I IFF specification.

This manual is divided into six chapters: The first chapter details the actual OS-9 IFF C

functions, while the remaining chapters are the IFF Specification and its appendices. The

IFF Specification and its appendices are reprinted with permission from the various au-

thors.

OS-9/IFF
Support Library

C Functions

iff_close() OS-9/IFF Support Library C Functions

1-2 OS-9/IFF Support Library

SYNOPSIS: #include <iff.h>

int iff_close(context)
IFF_CONTEXT *context; /* struct allocated by iff_open() */

FUNCTION: This function stops the processing of the IFF file specified by context. If the

file was open for writing on an RBF device, the size in the CAT will be up-

dated with the actual size of the data written.

On error, -1 is returned.

iff_close() Stop Reading/Writing IFF File

OS-9/IFF Support Library C Functions iff_open()

OS-9/IFF Support Library 1-3

SYNOPSIS: #include <iff.h>

IFF_CONTEXT *iff_open(path,rwmode,catid)
short path; /* previously opened path to IFF File */
short rwmode; /* mode to open file: IFF_READ or IFF_WRITE */
int catid; /* type of CAT to be written */

FUNCTION: This function reads or writes the first 12 bytes of information to/from a pre-

viously opened IFF file. Iff_open() allocates and initializes an IFF_CONTEXT

structure for this. The structure is allocated by the IFF code and a pointer

to it is returned to the caller. The IFF_CONTEXT structure is defined in iff.h

and below:

typedef struct {
short path; /* path number for file */
short mode; /* read/write mode for this path */
short nextformread; /* next FORM has already been read */
int filepos; /* current file position */
short filetype; /* file type (RBF or PIPE) */
int catid; /* CAT id */
int catpos; /* file position for size of CAT */
int catsize; /* original size of CAT */
int catlen; /* current length of CAT */
int formid; /* FORM id */
int formpos; /* file position for size of FORM */
int formsize; /* original size of FORM */
int formlen; /* current length of FORM */
int datapos; /* file position for size of data */
int datasize; /* original size of data */
int datalen; /* current length of data */
int framepos; /* file position of SampleFrame */
int framefctr; /* SampleFrame = datasize/framefctr */

} IFF_CONTEXT;

rwmode specifies whether path will be used for reading or writing. This pa-

rameter may have the value IFF_READ or IFF_WRITE . If the file is open for

writing then catid is used to specify the type of CAT to be written. If the file

is open for reading then the CAT id in the file must match catid. If catid is IF-

F_CAT_UNKNOWN then any CAT id is allowed. If the file being read does not

contain an enclosing CAT , then the id must be specified as unknown.

Null is returned on error.

iff_open() Read/Write first 12 bytes of IFF File

iff_read_aiff(), iff_read_data() OS-9/IFF Support Library C Functions

1-4 OS-9/IFF Support Library

SYNOPSIS: #include <iff.h>
#include <iff_aiff.h>

int iff_read_aiff(context,aiff)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
IFF_AIFF *aiff; /* aiff chunk */

FUNCTION: This function reads the header portion of an AIFF type FORM from the file

specified by context. This function returns the size of the data.

If there is no FORM active (i.e. iff_read_what_next() has not been called) or the

current FORM is not of type AIFF , then -1 is returned along with the error

code in errno.

SYNOPSIS: #include <iff.h>

int iff_read_data(context,buffer,length)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
char *buffer; /* ptr to data buffer */
int length; /* length of data to write */

FUNCTION: This function reads data for a specific FORM from the file specified by context.

The header for the FORM must have already been read by the appropriate

iff_read function. The number of bytes read is returned. Zero is returned on

end of FORM .

On error, -1 is returned.

iff_read_aiff() Read AIFF Header

iff_read_data() Read FORM data

OS-9/IFF Support Library C Functions iff_read_imag(), iff_read_what_next()

OS-9/IFF Support Library 1-5

SYNOPSIS: #include <iff.h>
#include <iff_imag.h>

int iff_read_imag(context,imag)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
IFF_IMAG *imag; /* imag chunk */

FUNCTION: This function reads the header portion of an IMAG type FORM from the file

specified by context. The variables imag->plte_data, imag->yuv_data, and imag->user_-

data must be initialize to zero or point to a sufficiently large buffer. This

function returns the size of the data.

If there is no FORM active (i.e. iff_read_what_next() has not been called) or the

current FORM is not of type IMAG , then -1 is returned along with the error

code in errno.

SYNOPSIS: #include <iff.h>

int iff_read_what_next(context)
IFF_CONTEXT *context; /* struct allocated by iff_open() */

FUNCTION: This function skips to the start of the next FORM within the file specified by

context and reads its type and size. If the current FORM size is unknown, an

error will be returned. The FORM type is returned to the caller. This must

be done so that the application will know which FORM reader to called to

read the actual header data. Zero is return on end of file.

On error, -1 is returned.

iff_read_imag() Read FORM IMAG Header

iff_read_what_next() Read Next FORM Type/Size

iff_seek(), iff_skip_data() OS-9/IFF Support Library C Functions

1-6 OS-9/IFF Support Library

SYNOPSIS: #include <iff.h>

int iff_seek(context,position,place)
IFF_CONTEXT *context;
int position,

place;

FUNCTION: This function will reposition the file pointer within the file and data chunk

pointed to by context, to the byte offset given in position. The argument place

specifies the base from which the offset is based: if 0, from the beginning of

the data chunk, if 1, from the current position, or if 2, from the end of the

data chunk.

The value returned is the resulting position in the file. If there is an error,

-1 is returned and the appropriate error code is placed in the global variable

errno.

If the FORM header has not been read with the appropriate iff_read function

or the data chunk does not have a known size, then an error is returned.

SYNOPSIS: #include <iff.h>

int iff_skip_data(context,length)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
int length; /* length of data to skip */

FUNCTION: This function will skip the data for the current FORM in the file specified by

context. If the FORM header has not been read with the appropriate iff_read

function, then an error is returned. If the specified length is zero, a skip is

done to the end of the FORM data. The number of bytes actually skipped is

returned. Zero is returned if already at end of FORM .

On error, -1 is returned.

iff_seek() Seek To New File Position

iff_skip_data() Skip FORM data

OS-9/IFF Support Library C Functions iff_write_aiff(), iff_write_data()

OS-9/IFF Support Library 1-7

SYNOPSIS: #include <iff.h>
#include <iff_aiff.h>

int iff_write_aiff(context,aiff,datasize)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
IFF_AIFF aiff; /* AIFF chunk */
int datasize; /* size of data to write */

FUNCTION: This function will write everything in the specified AIFF chunk except the

actual audio data to the file specified by context. If the size of the data is un-

known, then it will be updated when the writing of the data is complete. In

this case, the reader will not be able to read the correct amount of data un-

less it already knows its length.

On error, -1 is returned.

SYNOPSIS: #include <iff.h>

int iff_write_data(context,buffer,length)
IFF_CONTEXT *context; /* struct allocated by iff_open() */
char *buffer; /* ptr to data buffer */
int length; /* length of data to write */

FUNCTION: This function writes the data pointed to by buffer for a specific IFF FORM

from the file specified by context. The FORM must have already been started

by the appropriate iff_write function. This function returns the number of

bytes actually written.

On error, -1 is returned.

iff_write_aiff() Write AIFF Chunk

iff_write_data() Write Form data

iff_write_end(), iff_write_imag() OS-9/IFF Support Library C Functions

1-8 OS-9/IFF Support Library

SYNOPSIS: #include <iff.h>

int iff_write_end(context)
IFF_CONTEXT *context; /* struct allocated by iff_open() */

FUNCTION: This function is used to stop writing of data to a specific FORM from the file

specified by context. If the file was open for writing on an RBF device then

the FORM and DATA sizes will be updated with the actual sizes. The data size

is also extended to be an even number of bytes.

On error, -1 is returned.

SYNOPSIS: #include <iff.h>
#include <iff_imag.h>

int iff_write_imag(context,imag,datasize)
IFF_CONTEXT *context; /* struct allocated by iff_open */
IFF_IMAG imag; /* IMAG chunk */
int datasize; /* size of data to write */

FUNCTION: This function will write everything in the specified IMAG chunk except the

actual video data to the file specified by context. If the size of the data is un-

known, then it will be updated when the writing of the data is complete. In

this case, the reader will not be able to read the correct amount of data un-

less it already knows its length.

On error, -1 is returned.

iff_write_end() Stop Writing FORM data

iff_write_imag() Write IMAG Chunk

The OS-9/IFF Support Library 2-1

Preface

This specification is the result of a design session held at the studios of American Interactive

Media in Los Angeles, California on May 23-24, 1988. The session was attended by the fol-

lowing people, who share equally in the credit for this document, but are not to be held liable

for any misrepresentations of their ideas by the author:

Andy Davidson, AIM

Tom DiDomenico, OptImage

Alain Delpuch, Thomson

Todd Earles, Microware

Dave Feldman, ICOM

Todd MacMillan, Sun Microsystems

Steve Minar, Electronic Arts

George Rebane, Philips/AIM

Changes to the original specification (summarized in Appendix D) were motivated by com-

CD-I IFF
Specification:

Version 0.99
6 January 1989

Preface IFF Specification

2-2 The OS-9/IFF Support Library

ments from the participants in the above session, plus those of the following people:

Don Leeper

Drew Topel, AIM

Robert Patton, AIM

Jay Zipnick, ICOM

Jerry Morrison, Electronic Arts

Mitsu Hadeishi, Electronic Arts

Steve McClellan, Microware

Eric Miller, Microware

Dave Clark, Philips

Accompanying this specification is a set of software libraries, in source code format, which

tool developers can incorporate in their applications to process CD-I IFF files. Questions

about the specification or the libraries should be directed to the author:

Andrew Davidson

American Interactive Media

11050 Santa Monica Boulevard - Suite 300

Los Angeles, California 90025

USA

Telephone: 213-473-4050

Fax: 213-477-4953

IFF Specification Introduction

The OS-9/IFF Support Library 2-3

Introduction

CD-I IFF is the standard format in which all files used in the CD-I production process are

stored. This specification documents that format and describes the kinds of data which may

be stored in a CD-I IFF file.

The underlying framework for this standard is that of IFF - Interchange File Format. This

existing standard, developed by Electronic Arts, is documented completely in EA IFF 85 -

Standard for Interchange Files and explained succinctly in A Quick Introduction to

IFF. It is recommended that the reader have an understanding of IFF before reading this

specification.

IFF is a framework upon which interchange formats can be built for files used in a variety

of application areas. The CD-I community has adopted this framework for its use, and has

developed a standard set of file formats for use by CD-I tool developers. The goal of this stan-

dard is to allow data to be exchanged conveniently among different software tools and dif-

ferent computer systems. It is not intended to provide a data base management system for

the storage of CD-I data.

IFF for CD-I IFF Specification

2-4 The OS-9/IFF Support Library

IFF for CD-I

A CD-I IFF file may contain a single image, a single sound, or any combination of data types

which are defined in this specification and allowed by the rules of IFF. See A Quick Intro-

duction to IFF for a description of IFF files in general.

An example of a typical CD-I IFF file (one with a single image contained in it) is shown be-

low:

FORM

12248

IMAG

IHDR

144

384,240,...

IDAT

12088

0,0,0,...

FORM is a special chunk ID

12248 data bytes

FORM type is IMAG

an IHDR image header chunk

an IDAT image data chunk

12248

IFF Specification Data Definitions

The OS-9/IFF Support Library 2-5

Data Definitions

The following definitions apply to all CD-I IFF data. Note that the convention for these def-

initions is as defined for the Motorola 68000 family processors.

Data Types

Data Ordering

Bit ordering within each data type are

indicated above each diagram.

lsb = least significant byte
msb = most significant byte

31 24 23 16 15 8 7 0

7 0

7 0

15 8

msg

msg

msg

lsb

lsb

lsb

31 24 23 16 15 8 7 0

byte 0

short 0

long 0

short 1

byte 1 byte 2 byte 3

Common Declarations IFF Specification

2-6 The OS-9/IFF Support Library

Common Declarations

The following data types are common to all of the chunk definitions listed below:

typedef char IFF_8; /* 8-bit signed int */
typedef short IFF_16; /* 16-bit signed int */
typedef long IFF_32; /* 32-bit signed int */

typedef unsigned char IFF_U_8; /* 8-bit unsigned int */
typedef unsigned short IFF_U_16; /* 16-bit unsigned int */
typedef unsigned long IFF_U_32; /* 32-bit unsigned int */

typedef struct
{ /* color value tuple */

IFF_U_8 r,g,b;
} IFF_COLOR;

/* NOTE: the total size of this struct is 24 bits, which is not an integral number of

16-bit words. Many C compilers will automatically insert a pad byte into struc-

tures to force word alignment. It is the responsibility of the application program

when reading and writing these structures to insure that no pad bytes are

present in the file. Each color value on disk must occupy exactly 24 bits.

*/

typedef struct
{ /* YUV value tuple */

IFF_U_8 y,u,v;
} IFF_YUV;

/* NOTE: the total size of this struct is 24 bits, which is not an integral number of

16-bit words. Many C compilers will automatically insert a pad byte into struc-

tures to force word (16-bit) alignment. It is the responsibility of the application

program when reading and writing these structures to insure that no pad bytes

are present in the file. Each YUV value on disk must occupy exactly 24 bits.

*/

IFF Specification FORM & Chunk Definitions

The OS-9/IFF Support Library 2-7

FORM & Chunk Definitions

IMAGs (Image) FORM

All CD-I image formats (RGB, CLUT, DYUV, and RL) are stored in a single FORM called

IMAG . The IMAG FORM has no fields or data of its own; it simply signals the beginning of

the collection of chunks to follow.

The first chunk in every IMAG FORM must be a standard header, of type IHDR . Following

that are a number of optional chunks, depending upon the type of image being represented.

The last chunk is, with one exception noted below, always of type IDAT , and contains the

actual image data. The component chunks of an IMAG FORM are as follows:

IMAG CD-I image

IHDR standard header

IPAR optional image parameters

PLTE optional palette

YUVS optional DYUV start values

USER optional user-defined data

IDAT actual image data

Although CLUT images will likely have palettes associated with them (and contained in the

same IMAG FORM), it is also possible to have a file which contains just a palette. In that

case, there is no IDAT chunk in the IMAG FORM , and the last chunk is a PLTE instead.

IHDR (Image Header) Chunk IFF Specification

2-8 The OS-9/IFF Support Library

IHDR (Image Header) Chunk

The image header contains fields whose contents define the structure and organization of

the image stored in the remaining chunks in the FORM . The IHDR chunk, which is required

and must be the first chunk in the IMAG FORM , is defined as follows:

/* image header */
typedef struct
{

IFF_U_16 ihdr_width; /* logical width of image (number of significant

pixels in each scan line) */

IFF_U_16 ihdr_line_size; /* physical width of image (number of bytes in

each scan line, including any data required at

the end of each scan line for padding [see de-

scription of each model’s IDAT chunk for pad-

ding rules]) This field is not used when ih-
dr_model = IFF_MDL_RL7 or IFF_MDL_RL3 .

When ihdr_model = IFF_MDL_RGB555, this

field defines the size of one scan line of the up-

per or lower portion of the pixel data, but not

the size of them both together. */

IFF_U_16 ihdr_height; /* logical height of image (number of scan lines)

*/

IFF_U_16 ihdr_model; /* image model (coding method) */

IFF_U_16 ihdr_depth; /* physical size of pixel (number of bits per pixel

used in storing image data) When

ihdr_model = IFF_MDL_RL7 or IFF_MDL_-
RL3, this value only represents the size of a

single pixel; the size of a run of pixels is inde-

terminate */

IFF_U_8 ihdr_dyuv_kind; /* if ihdr_model = IFF_MDL_DYUV, indicates

whether there is one DYUV start value for all

scan lines (in ihdr_dyuv_start), or whether

each scan line has its own start value in the

YUVS chunk which follows */

IFF_YUV ihdr_dyuv_start; /* start values for DYUV image if

ihdr_model = IFF_MDL_DYUV and

ihdr_dyuv_kind = IFF_DYUV_ONE */

} IFF_IHDR;

IFF Specification IHDR (Image Header) Chunk

The OS-9/IFF Support Library 2-9

Note that the total size of the image data is NOT stored in the image header. This value,

which is necessary for processing the data and includes all padding and is independent of

the model in effect, is found in the (standard IFF) byte count field of the IDAT chunk.

/* Definitions for values used in the field ihdr_model */

#define IFF_MDL_RGB888 1 /* red, green, blue - 8 bits per color */
#define IFF_MDL_RGB555 2 /* Green Book absolute RGB */
#define IFF_MDL_DYUV 3 /* Green Book Delta YUV */
#define IFF_MDL_CLUT8 4 /* Green Book 8 bit CLUT */
#define IFF_MDL_CLUT7 5 /* Green Book 7 bit CLUT */
#define IFF_MDL_CLUT4 6 /* Green Book 4 bit CLUT */
#define IFF_MDL_CLUT3 7 /* Green Book 3 bit CLUT */
#define IFF_MDL_RL7 8 /* Green Book runlength coded 7 bit CLUT */
#define IFF_MDL_RL3 9 /* Green Book runlength coded 3 bit CLUT */
#define IFF_MDL_PLTE 10 /* color palette only */

/* Definitions for values used in the field ihdr_dyuv_kind */

#define IFF_DYUV_ONE 0 /* one start value for all scan lines */
#define IFF_DYUV_EACH 1 /* start value for each scan line */

For the following values of the field ihdr_model:

IFF_MDL_RGB888
IFF_MDL_RGB555
IFF_MDL_DYUV
IFF_MDL_CLUT8
IFF_MDL_CLUT7
IFF_MDL_CLUT4
IFF_MDL_CLUT3

the following relationships apply:

image size (in IDATS chunk) = ihdr_height * ihdr_line_size
ihdr_line_size = (ihdr_width * ihdr_depth)/8 + required padding

See the description of each model’s IDAT chunk for information on required padding on each

scan line.

IPAR (Image Parameters) Chunk IFF Specification

2-10 The OS-9/IFF Support Library

IPAR (Image Parameters) Chunk

Image parameters are fields whose contents provide information associated with the image,

but not required in order to display it.

The IPAR chunk, which is optional, is defined as follows:

/* image parameters */

typedef struct

{

IFF_16 ipar_x_off, /* offset of origin in source image

ipar_y_off; [0 ≤ ipar_x_off ≤ ipar_x_page]
[0 ≤ ipar_y_off ≤ ipar_y_page] */

IFF_U_16 ipar_x_ratio, /* aspect ratio of pixels in source image;

ipar_y_ratio; ratio is ipar_y_ratio/ipar_x_ratio.
E.g. 1.333:1 is ipar_y_ratio=4,
ipar_x_ratio=3 */

IFF_U_16 ipar_x_page, /* size of source image */
ipar_y_page;

IFF_U_16 ipar_x_grab, /* location of hot spot within image */
ipar_y_grab;

IFF_COLOR ipar_trans; /* transparent color */

IFF_COLOR ipar_mask; /* mask color */

} IFF_IPAR;

IFF Specification PLTE (Palette) Chunk

The OS-9/IFF Support Library 2-11

PLTE (Palette) Chunk

A palette is a set of color values from which the colors in a CLUT image are assigned. It is

a zero-based indexed table of color values.

The PLTE chunk, which is optional, is defined as follows:

/* palette */
typedef struct
{

IFF_U_16 plte_offset; /* offset (entry number) from start of

CLUT where this palette is to be

loaded */

IFF_U_16 plte_count; /* number of entries in this palette */

IFF_COLOR plte_data[plte_count]; /* color values for palette */

} IFF_PLTE;

/* NOTE that one entry in a palette consists of a single color, which includes red,

green, and blue values. See the description about storage allocation of this type in

the description of IFF_COLOR in the Common Declarations section above.

*/

YUVS (YUV Start Values) Chunk IFF Specification

2-12 The OS-9/IFF Support Library

YUVS (YUV Start Values) Chunk

YUV start values are a set of DYUV values which define the color of the first pixel on each

scan line in an image.

If the value of the field ihdr_model in the IHDR chunk is equal to IFF_MDL_DYUV , then the

YUVS chunk must be present if the value of the field ihdr_dyuv_kind in the IHDR chunk is

equal to IFF_DYUV_EACH and should not be present if the value of that field is equal to IF-
F_DYUV_ONE. The YUVS chunk is defined as follows:

/* YUV start values */

typedef struct

{

IFF_YUV yuvs_value[ihdr_height]; /* YUV value for each scan line - the

number of these values is equal to

the value of the field ihdr_height in
the IHDR chunk */

} IFF_YUVS;

IFF Specification USER (User-Defined Data) Chunk

The OS-9/IFF Support Library 2-13

USER (User-Defined Data) Chunk

The USER chunk is provided merely as a convenient way of storing comments, copyright no-

tices, or other text information. It should not be used for storing processing parameters or

other data.

The format of the USER chunk, which is optional, is defined by the application which pro-

cesses it and is not specified here.

IDAT (Image Data) Chunk IFF Specification

2-14 The OS-9/IFF Support Library

IDAT (Image Data) Chunk

The IDAT chunk contains the actual data representing the image stored in the file. The

format of this data depends upon the model in effect for the image, as defined in the

ihdr_model field of the IHDR chunk. The cases are described on the following pages.

In all cases, the order in which pixels appear is as follows:

P(0,0), P(0,1), P(0,2), ... P(0,ihdr_width),
P(1,0), P(1,1), P(1,2), ... P(1,ihdr_width),
...
P(ihdr_height,0), P(ihdr_height,1), P(ihdr_height,2), ...

P(ihdr_height,ihdr_width)

where ihdr_height and ihdr_width are the values in those fields in the IHDR chunk, and the

notation P(m,n) means the nth pixel on the mth scan line.

IFF Specification IFF_MDL_RGB888

The OS-9/IFF Support Library 2-15

IFF_MDL_RGB888

The RGB888 color model is a general purpose, machine-independent RGB image represen-

tation. Many images are stored in their original digital format using this representation.

It is not related to the CD-I internal RGB representation. That color model is described be-

low, in the IFF_MDL_RGB555 section.

For RGB888 images, the data is sinply the color (RGB values) for each pixel in the image.

The format of that data is as follows:

/* IFF_MDL_RGB888 image data */

typedef struc
{

IFF_COLOR idat_rgb888[n]; /* This is simply a stream of color values for

each pixel in the image. No padding bytes

are inserted in the data. The value of n =
ihdr_width * ihdr_height , where ihdr_width
and ihdr_height are the values found in

those fields in the IHDR chunk. */

} IFF_IDAT_RGB888;

IFF_MDL_RGB555 IFF Specification

2-16 The OS-9/IFF Support Library

IFF_MDL_RGB555

For RGB555 images, the data is an absolute representation of the color of each pixel as de-

scribed in the CD-I Green Book. In this model, one 16 bit word is used to represent each

pixel’s color, but the word is split into two halves, and each half (byte) is stored separately.

The format of the data is as follows:

/* IFF_MDL_RGB555 image data */

typedef struct

{

IFF_U_8 idat_rgb555_upper [n]; /* Upper bytes of each pixel */

IFF_U_8 idat_rgb555_lower [n]; /* Lower bytes of each pixel */

/* n = ihdr_line_size *
ihdr_height, where

ihdr_line_sizeand ihdr_height are the

values found in those fields in the IHDR
chunk. The first pixel of each scan line

must begin in a longword boundary. If

necessary, pad bytes must be present

after the last pixel in each scan line to

achieve this. The value of ihdr_line_size
includes any pad bytes, while the value

of ihdr_width does not. Note that for

this color model, the value of

ihdr_line_size does not represent the

scan line’s entire pixel data, but only

that of the upper or lower portion. */

} IFF_IDAT_RGB555;

IFF Specification IFF_MDL_DYUV

The OS-9/IFF Support Library 2-17

IFF_MDL_DYUV

For DYUV images, the data is a sequence of two byte pairs as described in the CD-I Green

Book. (Each pair of bytes represents two adjacent pixels on a scan line.) The format of the

data is as follows:

/* IFF_MDL_DYUV image data */

typedef struct

{

IFF_U_8 idat_dyuv [n]; /* This is simply a stream of bytes which con-

tains the DYUV data.

n = ihdr_line_size * ihdr_heightwhere ih-
dr_line_size and ihdr_height are the values

found in those fields in the IHDR chunk. The

first pixel of each scan line must begin on a

longword boundary. If necessary, pad bytes

must be present after the last pixel in each

scan line to achieve this. The value of ih-
dr_line_size includes any pad bytes, while the

value of

ihdr_width does not. */

} IFF_IDAT_DYUV;

IFF_MDL_CLUT8 IFF Specification

2-18 The OS-9/IFF Support Library

IFF_MDL_CLUT8
IFF_MDL_CLUT7
IFF_MDL_CLUT4
IFF_MDL_CLUT3

For CLUT images, the image data are sinply indices into a palette for each pixel in the im-

age. The size of the index depends upon the particular CLUT model being represented, and

is defined in the CD-I Green Book. The format of the data is as follows:

/* IFF_MDL_CLUT image data */

typedef struct
{

IFF_U_8 idat_clut[n]; /* This is a stream of bytes which contains the

CLUT index data.

n = ihdr_line_size * ihdr_height, where ih-
dr_line_size and ihdr_height are the values

found in those fields in the IHDR chunk. The

first pixel of each scan line must begin on a

longword boundary. If necessary, pad bytes

must be present after the last pixel in each

scan line to achieve this. The value of ih-
dr_line_size includes any pad bytes, while the

value of

ihdr_width does not. */

} IFF_IDAT_CLUT;

IFF Specification

The OS-9/IFF Support Library 2-19

IFF_MDL_RL7
IFF_MDL_RL3

For RL images, the data is a sequence of bytes which represents run-length coding of CLUT

image data. This encoding scheme is sensitive to image content, and there is no predictable

relationship between the dimensions of the original image and the size of its run-length cod-

ed version. The exact encoding scheme is described in the CD-I Green Book. The format of

the data in this model is as follows:

/* IFF_MDL_RL image data */

typedef struct
{

IFF_U_8 idat_rl [n]; /* This is simply a stream of bytes which con-

tains the RL data. The total number of bytes

depends upon the picture contents and is

found in the IFF byte count field of this chunk.

*/

} IFF_IDAT_RL;

IFF_MDL_PLTE IFF Specification

2-20 The OS-9/IFF Support Library

IFF_MDL_PLTE

For palettes, the IDAT chunk does not exist, but a PLTE chunk is present instead. The for-

mat of that chunk has been documented above.

IFF Specification AIFF (Audio) FORM

The OS-9/IFF Support Library 2-21

AIFF (Audio) FORM

The CD-I audio formats (PCM and ADPCM) are stored in a single FORM called AIFF . The

format of this FORM is exactly as specified in the chapter Audio Interchange File For-

mat: AIFF, A Standard for Sampled Sound Files, Version 1.2.

The AIFF FORM , as specified in that chapter, is used to represent PCM audio data. It is

extended to support CD-I audio data with one additional chunk definition. The existing AIFF
FORM stores the actual sampled PCM data in an SSND chunk. If, instead of an SSND chunk,

an APCM chunk is encountered in the file, then the data contained in it is assumed to be

ADPCM data, rather than PCM data. The physical representation of this part of the AD-

PCM data is identical to that of PCM data; the contents are identified only by the id of the

enclosing chunk.

end of chapter 2

NOTES IFF Specification

2-22 The OS-9/IFF Support Library

NOTES

The OS-9/IFF Support Library 3-1

IFF is the Amiga-standard Interchange File Format. It’s designed to work across all

CPUs.

Why IFF?

Did you ever have this happen to your picture file?

 You can’t load it into another paint program.

 You need a converter to adopt ZooPaint release 2.0 or a new hardware feature.

 You must "export" and "import" to use it in a page layout program.

 You can’t move it to another brand of computer.

What about musical scores, digitized audio and other data? It seems the only thing that does

interchange well is plain ASCII text files.

It’s inexcusable. And yet this is "normal" in MS-DOS.

What Is IFF?

IFF is a 2-level standard. The first layer is the "wrapper" or "envelope" structure for all IFF

files. Technically, it’s the syntax. The second layer defines particular IFF file types such as

ILBM (the Amiga standard for raster pictures), ANIM (animation), SMUS (simple musical

score), and 8SVX (8-bit sampled audio voice).

IFF, the "Interchange File Format" standard, encourages multimedia interchange between

different programs and different computers. It supports long-lived, extensible data. It’s

great for composite files like a page layout file that includes photos, an animation file that

includes music, and a library of sound effects.

CD-I IFF
Specification:

A Quick Introduction To IFF

Jerry Morrison,
Electronic Arts

10-17-88

What’s The Trick? IFF Specification

3-2 The OS-9/IFF Support Library

IFF is also a design idea.

programs should use interchange formats for their everyday storage

This way, users rarely need converters and import/export commands to change software re-

leases, application programs, or hardware.

What’s The Trick?

This is easy to achieve if programmers let go of one notion: dumping internal data struc-

tures to disk. A program’s internal data structures should really be suited to what the pro-

gram does and how it works. What’s "best" changes as the program evolves new functions

and methods. But a disk format should be suited to storage and interchange.

Once we design internal formats and disk formats for their own separate purposes, the rest

is easy. Reading and writing become behind-the-scenes conversions. But two conversions

hidden in each program is much better than a pile of conversion programs.

Does this seem strange? It’s what ASCII text programs do! Text editors use line tables, piece

tables, gaps, and other structures for fast editing and searching. Text generators and con-

sumers construct and parse files. That’s why the ASCII standard works so well.

Also, every file must be self-sufficient. E.g. a picture file has to include its size and number

of bits/pixel.

What’s An IFF File Look Like?

IFF is based on data blocks called "chunks". Here’s an example color map chunk:

A chunk is made of a 4-character type identifier, a data byte count, and the data bytes. It’s

basically a Macintosh "resource" with a 32-bit size.

char typeID[4]

unsigned long dataSize

char data[]

’CMAP’

48

0, 0, 0, 255, 255,

in an ILBM file,

48 data bytes

16 3-byte color values:
255, ...

CMAP means "color map"

black, white, ...

IFF Specification What’s An IFF File Look Like?

The OS-9/IFF Support Library 3-3

Fine points:

• Every 16- and 32-bit number is stored in 68000 byte order--highest byte first. An intel

CPU must reverse the 2- or 4-byte sequence of each number. This applies to chunk

dataSize fields and to numbers inside chunk data. It does not affect character strings

and byte data because you can’t reverse a 1-byte sequence. But it does affect the 32-

bit math used in IFF’s MakeID macro.

• Every 16-and 32-bit number is stored on an even address so a 68000 can read IFF

data in RAM.

• Every odd-length chunk must be followed by a 0 pad byte. This pad byte is not counted

in dataSize.

• An ID is made of 4 ASCII characters in the range " " (space, hex 20) through "~" (tilde,

hex 7E).

• IDs are compared using a quick 32-bit equality test. Case matters.

A chunk usually holds a C struct (Pascal record) or any array. E.g. an ‘ILBM’ picture has a

‘BMHD’ bitmap header (struct) chunk and a ‘BODY’ raster body (array) chunk.

To construct an IFF file, just put a file type ID (like ‘ILBM’) and chunks one after another

(with any pad bytes) into a wrapper chunk called a ‘FORM’ (Think "FILE").

’CMAP’

21

0, 0, 0, 255, ...

’BMHD’

20

320, 200, 0, ...

’BODY’

24000

0, 0, 0, ...

’FORM’

24070

’ILBM’

0

a CMAP color map chunk

a BMHD bitmap header chunk

a BODY raster body chunk

FORM is a special chunk ID

24070 data bytes

FORM type is ILBM

a pad byte

24070

How To Read An IFF File? IFF Specification

3-4 The OS-9/IFF Support Library

A FORM always contains one 4-character FORM type ID (a file type, in this case ‘ILBM’)

followed by any number of data chunks. In this example, the FORM type is ‘ILBM’, which

stands for "InterLeaved BitMap". ILBM is an IFF standard for bitplane raster pictures. The

bitplanes are interleaved so you can process a scan line at a time. This example has 3

chunks. Note the pad byte after the odd length chunk.

Within FORMs ILBM, ‘BMHD’ identifies a bitmap header chunk, ‘CMAP’ a color map, and

‘BODY’ a raster body. In general, the chunk IDs in a FORM are local to the FORM type ID.

The only exception is the 4 global chunk IDs ‘FORM’, ‘LIST’, ‘CAT’ and ‘PROP’. (A FORM

may contain other FORM chunks. E.g. an animation FORM might contain picture FORMs

and sound FORMs.)

How To Read An IFF File?

Given the C subroutine GetChunkHeader

/* Skip any remaining bytes of the current chunk, skip any pad byte, and
 read the next chunk header. Returns the chunk ID or END_MARK. */
ID GetChunkHeader ();

we read the chunks in a FORM ILBM with a loop like this:

do
 switch (id = GetChunkHeader ())
 {
 case ‘CMAP’: ProcessCMAP() ; break;
 case ‘BMHD’: ProcessBMHD() ; break;
 case ‘BODY’: ProcessBODY() ; break;
 /* default: just ignore the chunk */
 }
 until (id == END_MARK);

This loop processes each chunk by dispatching to a routine that reads the specific type of

chunk data. We don’t assume a particular order of chunks. This is a simple parser.

This sample ignores details like I/O errors. There are also higher-level errors to check, e.g.

if we hit END_MARK without reading a BODY, we didn’t get a picture.

Every IFF file is a ‘FORM’, ‘LIST’, or ‘CAT’ chunk. So you can recognize an IFF file by the

first 4 bytes. (FORM is far and away the most common. We’ll get to LIST and CAT below.)

If the file contains a FORM, dispatch on the FORM type ID to a chunk-reader loop like the

one above.

File Extensibility

These techniques make IFF files extensible and forward/backward compatible:

IFF Specification Advanced Topics: CAT, LIST, And PROP (not all that

The OS-9/IFF Support Library 3-5

• Design chunk contents for compatibility across environments and for longevity.

• The standards team for a FORM type can extend one if its chunks that contains a

study by appending new, optional struct fields.

• Anyone can define new FORM types as well as new chunk types within a FORM type.

• A chunk can be superseded by a new chunk type, e.g. to store more bits per RGB color

register. New programs can output the old chunk (for backward compatibility) along

with the new chunk.

• If you must change data in an incompatible way, change the chunk ID or the FORM

type ID.

Advanced Topics: CAT, LIST, And PROP (not all that important)

Sometimes you want to put several "files" into one, such as a picture library. This is what

CAT is for. It "concatenates" FORM and LIST chunks.

’FORM’

24070

’ILBM’

’CAT’

48160

’ILBM’

a FORM ILBM

concatenation

48160 data bytes

hint: contains FORMs ILBM

...

’FORM’

24070

’ILBM’

...

a FORM ILBM

Hints On ILBM Files IFF Specification

3-6 The OS-9/IFF Support Library

This example CAT holds two ILBMs. It can be shown outline-style:

Sometimes you want to share the same color map across many pictures. LIST and PROP do

this:

A LIST holds PROPs and FORMs (and occasionally LISTs and CATs). A PROP ILBM con-

tains default data (in the above example, just one CMAP chunk) for all FORMs ILBM in the

LIST. Any FORM may override the PROP-defined default with its own CMAP. All PROPs

must appear at the beginning of a LIST. Each FORM type standardizes (among other

things) which of its chunks are "property chunks" (may appear in PROPs) and which are

"data chunks" (may not appear in PROPs).

Hints On ILBM Files

Avoid some pitfalls when reading ILBM files.

• Don’t ignore the BitMapHeader.masking field. A bitmap with a mask (such as a par-

tially-transparent DPaint brush or a DPaint picture with a stencil) will read as gar-

bage if you don’t de-interleave the mark.

• Don’t assume all images are compressed. Narrow images aren’t usually run-com-

pressed since the would actually make them longer.

• Don’t assume a particular image size. You may encounter overscan pictures and PAL

pictures.

CAT ILBM
. . FORM ILBM
. . . . BMHD
. . . . CMAP
. . . . BODY
. . FORM ILBM
. . . . BMHD
. . . . CMAP
. . . . BODY

a complete FORM ILBM picture

LIST ILBM
. . PROP ILBM default properties for FORMs ILBM
. . . . CMAP an ILBM CMAP chunk (there could be a BMHD chunk here,too)
. . FORM ILBM
. . . . BMHD (there could be a CMAP here to override the default)
. . . . BODY
. . FORM ILBM
. . . . BMHD (there could be a CMAP here to override the default)
. . . . BODY

IFF Specification CGA and EGA subtleties

The OS-9/IFF Support Library 3-7

There’s a better way to read a BODY than the example IFF code. The GetBODY routine

should call a GetScanline routine once per scan line, which calls a GetRow routine for each

bitplane in the file. This in turn calls a GetUnpackedBytes routine, which calls a GetBytes

routine as needed and unpacks the result. (If the picture is uncompressed, GetRow calls

GetBytes directly.) Since the unpacker knows how many packed bytes to read, this avoids

juggling buffers for a memory-to-memory UnpackBytes routine.

Caution: If you make many AmigaDOS calls to read or write a few bytes at a time, perfor-

mance will be mud! AmigaDOS has a very high overhead per call, even with RAM disk. So

use buffered read/write routines.

Different hardware display devices have different color resolutions:

 Device R:G:B Bits maxColor

 Mac SE 1 1
 IBM EGA 2:2:2 3
 Atari ST 3:3:3 7
 Amiga 4:4:4 15
 CD-I 5:5:5 31
 IBM VGA 6:6:6 63
 Mac II 8:8:8 255

ILBM CMAP colors are 8:8:8 bits of R:G:B. To read them into hardware colors, just take the

high-order bits. E.g. to convert ILBM’s 8-bit Red R8 to Amiga’s 4-bit red R4, right-shift

R4:=R8>>4.

To write hardware colors to ILBM colors, the ILBM specification says just set the high bits

(R8:=R4<<4). But you can transmit higher contrast to foreign display devices by scaling the

data [0..maxColor] to the full range [0..255]. In other words, R8:=(Rn x 255) ÷ maxColor. (Ex-

ample: EGA color 1:2:3 scales to 85:170:255.) This makes a big difference where maxColor is

less than 15. In the extreme case, Mac SE white (1) should be converted to ILBM white (255),

not to IBLM gray (128).

CGA and EGA subtleties

IBM EGA colors in 350 scan line mode are 2:2:2 bits of R:G:B, stored in memory as xxR‘G’-

B’RBG. That’s 3 low-order bits followed by 3 high-order bits.

IBM CGA colors are 4 bits stored in a byte as xxxxIRGB. (EGA colors in 200 scan line modes

are the same as CGA colors, but stored in memory as xxx1xRGB.) That’s 3 high-order bits

(one for each of R,G, and B) plus one low-order "Intensity" bit for all 3 components R,G, and

B. Exception: IBM monitors show IRGB=0110 as brown, which is really the EGA color

R:G:B=2:1:0, not dark yellow 2:2:0.

NOTES

NOTES IFF Specification

3-8 The OS-9/IFF Support Library

The OS-9/IFF Support Library 4-1

1. Introduction

Standards are Good for Software Developers

As home computer hardware evolves to better and better media machines, the demand in-

crease for higher quality, more detailed data. Data development gets more expensive, re-

quires more expenses and better tools, and has to be shared across projects. Thank about

several ports of a product on one CD-ROM with 500M Bytes of common data!

Development tools need standard interchange file formats. Imagine scanning in images of

"player" shapes, moving them to a paint program for editing, then incorporating them into

a game. Or writing a theme song with a Macintosh score editor and incorporating it into an

Amiga game. The data must at times be transformed, clipped, filled out, and moved across

machine kinds. Media projects will depend on data transfer from graphic, music, sound ef-

fect, animation, and script tools.

Standards are Good for Software Users

Customers should be able to move their own data between independently developed soft-

ware products. And they should be able to buy data libraries usable across many such prod-

ucts. The types of data objects to exchange are open-ended and include plain and formatted

text, raster and structured graphics, fonts, music, sound effects, musical instrument de-

scriptions, and animation.

"EA IFF 85"
Standard For Interchange

Format Files

August 1, 1987

Introduction: Here is "EA IFF 1985" EA IFF 85

4-2 The OS-9/IFF Support Library

The problem with expedient file formats - typically memory dumps - is that they’re too pro-

vincial. By designing data for one particular use (e.g. a screen snapshot), they preclude fu-

ture expansion (would you like a full page picture? a multi-page document?). In neglecting

the possibility that other programs might read their data, they fail to save contectual infor-

mation (how many bit planes? What resolution?). Ignoring that other programs might cre-

ate such files, they’re intolerant of extra data (texture palette for a picture editor), missing

data (no color map), or minor variations (smaller image). In practice, a filed representation

should rarely mirror an in-memory representation. The former should be designed for lon-

gevity; the latter to optimize the manipulations of a particular program. The same filed

data will be read into different memory formats by different programs.

The IFF philosophy: "A little behind-the-scenes conversion when programs read and write

files is far better than NxM explicit conversion utilities for highly specialized formats."

So we need some standardization for data interchange among development tools and prod-

ucts. The more developers that adopt a standard, the better for all of us and our customers.

Here is "EA IFF 1985"

Here is our offering: Electronic Arts" IFF standard for Interchange File Format. The full

name is "EA IFF 1985". Alternatives and justifications are included for certain choices.

Public domain subroutine packages and utility programs are available to make it easy to

write and use IFF-compatible programs.

Part 1 introduces the standard. Part 2 presents is requirements and background. Parts 3,

4, and 5 define the primitive data types. FORMS, and LISTs, respectively, and how to define

new high level types. Part 6 specifies the top level file structure. Appendix A is included for

quick reference and Appendix B names the committee responsible for this standard.

EA IFF 85 Introduction: References

The OS-9/IFF Support Library 4-3

References

American National Standard Additional Control Codes for Use with ASCII, ANSI

standard 3.64-1979 for an 8-bit character set. See also ISO standard 2022 and ISO/DIS

standard 6429.2.

Amiga (TM) is a trademark of Commodore-Amiga, Inc.

C, A Reference Manual, Samuel P. Harbison and Guy L. Steele Jr., Tartan Laboratories,

Prentice-Hall, Englewood Cliffs, NJ 1984.

Compiler Construction, An Advanced Course, edited by F.L. Bauer and J. Eickel

(Springer-Verlag, 1976). This book is one of many sources for information on recursive de-

scent parsing.

DIF Technical Specification (copyright) 1981 by Software Arts, Inc. DIF (TM) is the for-

mat for speadsheet data interchange developed by Software Arts., Inc. DIF (TM) is a trade-

mark of Software Arts, Inc.

Electronic Arts (TM) is a trademark of Electronic Arts.

"FTXT" IFF Formatted Text, from Electronic Arts, IFF supplement document for a text

format.

Inside Macintosh (copyright) 1982, 1983, 1985 Apple Computer, Inc., a programmer’s ref-

erence manual. Apple "r" is a trademark of Apple Computer, Inc. Macintosh (Trademark)

is a trademark licensed to Apple Computer, Inc.

"ILBM" IFF Interleaved Bitmap, from Electronic Arts, IFF supplement document for a

raster image format.

M68000 16/32-Bit Microprocessor Programmer’s Reference Manual (copyright) 1984,

1982, 1980, 1979 by Motorola, Inc.

PostScript Language Manual (copyright) 1984 Adobe Systems Incorporated. PostScript

(trademark) is a trademark of Adobe Systems, Inc. Times and Helvetica (trademark) are

trademarks of Allied Corporation.

InterScript: A proposal for a Standard for the Inerchange of Editable Documents

(copyright) 1984 Xerox Corporation.

Introduction to InterScript (copyright) 1985 Xerox Corporation.

Background for Designers: What Do We Need? EA IFF 85

4-4 The OS-9/IFF Support Library

2. Background for Designers

Part 2 is about the background, requirements, and goals for the standard. It’s geared for

people who want to design new types of IFF objects. People just interested in using the stan-

dard may wish to skip this part.

What Do We Need?

A standard should be long on prescription and short on overhead. It should give lots of rules

for designing programs and data files for synergy. But neither the programs nor the files

should cost too much more than the expedient variety. While we’re looking to a future with

CD-ROMs and perpendicular recording, the standard must work well on floppy disks.

For program portability, simplicity, and efficiency, formats should be designed with more

than one implementation style in mind. (In practice, pure stream I/O is adequate although

random access makes it easier to write files.) It ought to be possible to read one of many

objects in a file without scanning all the preceding data. Some programs need to read and

play out their data in real time, so we need good compromises between generality and effi-

ciency.

As much as we need standards, they can’t hold up product schedules. So we also need a kind

of decentralized extensibility where any software developer can define and refine new object

types without some "standards authority" in the loop. Developers must be able to extend

existing formats in a forward and backward-compatible way. A central repository for design

information and example programs can help us take full advantage of the standard.

For convenience, data formats should heed the restrictions of various processors and envi-

ronments. E.g. word-alignment greatly helps 68000 access at insignificant cost to 8088 pro-

grams.

Other goals include the ability to share common elements over a list of objects and the ability

to construct composite objects containing other data objects with structural information like

directories.

And finally, "Simple things should be simple and complex things should be possible."

- Alan Kay.

Think Ahead

Let’s think ahead and build programs that read and write files for each other and for pro-

grams yet to be designed. Build data formats to last for future computers so long as the over-

head is acceptable. This extends the usefulness and life of today’s programs and data.

To maximize interconnectivity, the standard file structure and the specific object formats

must all be general and extensible. Think ahead when designing an object. It should serve

many purposes and allow many programs to store and read back all the information they

EA IFF 85 Background for Designers: Scope

The OS-9/IFF Support Library 4-5

need; even squeeze in custom data. Then a programmer can store the available data and is

encouraged to include fixed contextual details. Recipient programs can read the needed

parts, skip unrecognized stuff, default missing data, and use the stored context to help

transform the data as needed.

Scope

IFF addresses these needs by defining a standard file structure, some initial data object

types, ways to define new types, and rules for accessing these files. We can accomplish a

great deal by writing programs according to this standard, but don’t expect direct compati-

bility with existing software. We’ll need conversion programs to bridge the gap from the old

world.

IFF is geared for computers that readily process information in 8-bit bytes. It assumes a

"physical layer" of data storage and transmission that reliably maintains "files" as strings

of 8-bit bytes. The standard treats a "file" as a container of data bytes and is independent

of how to find a file and whether it has a byte count.

This standard does not by itself implement a clipboard for cutting and pasting data between

programs. A clipboard needs software to mediate access, to maintain a "contents version

number" so programs can detect updates, and to manage the data in "virtual memory".

Data Abstraction

The basic problem is how to represent information in a way that’s program-independent,

compiler-independent, machine-independent, and device-independent.

The computer science approach is "data abstraction", also known as "objects", "actors", and

"abstract data types". A data abstraction has a "concrete representation" (its storage for-

mat), an "abstract representation" (its capabilities and uses), and access procedures that iso-

late all the calling software from the concrete representation. Only the access procedures

touch the data storage. Hiding mutable details behind an interface is called "information

hiding". What data abstraction does is abstract from details of implementing the object,

namely the selected storage representation and algorithms for manipulating it.

The power of this approach is modularity. By adjusting the access procedures we can extend

and restructure the data without impacting the interface or is callers. Conversely, we can

extend and restructure the interface and callers without making existing data obsolete. It’s

great for interchange!

But we seem to need the opposite: fixed file formats for all programs to access. Actually, we

could file data abstractions("filed objects") by storing the data and access procedures togeth-

er. We’d have to encode the access procedures in a standard machine-independent program-

ming language a la PostScript. Even still, the interface can’t evolve freely since we can’t up-

date all copies of the access procedures. So we’ll have to design our abstract representations

Background for Designers: Previous Work EA IFF 85

4-6 The OS-9/IFF Support Library

for limited evolution and occasional revolution (conversions).

In any case, today’s microcomputers can’t practically store data abstractions. They can do

the next best thing:store arbitrary types of data in "data chunks", each with a type identifier

and a length count. The type identifier is a reference by name to the access procedures(any

local implementation). The length count enables storage-level object operations like "copy"

and "skip to next" independent of object type.

Chunk writing is straightforward. Chunk reading requires a trivial parser to scan each

chunk and dispatch to the proper access/conversion procedure. Reading chunks nested in-

side other chunks requires recursion, but no lookahead or backup.

That’s the main idea of IFF. There are, of course, a few other details...

Previous Work

Where our needs are similar, we borrow from existing standards.

Our basic need to move data between independently developed programs is similar to that

addressed by the Apple Macintosh desk scrap or "clipboard" (Inside Macintosh chapter

"Scrap Manager"). The Scrap Manager works closely with the Resource Manager, a handy

filer and swapper for data objects (text strings, dialog window templates, pictures, fonts ...)

including types yet to be designed (Inside Macintosh chapter "Resource Manager"). The Re-

source Manager is a kin to Smalltalk’s object swapper.

We will probably write a Macintosh desk accessory that converts IFF files to and from the

Macintosh clipboard for quick and easy interchange with programs like MacPaint and Re-

source Mover.

Macintosh uses a simple and elegant scheme of 4-character "identifiers" to identify resource

types, clipboard format types, file types, and file creator programs. Alternatives are unique

ID numbers assigned by a central authority of by hierarchical authorities, unique ID num-

bers generated by algorithm, other fixed length character strings, and variable length

strings. Character string identifiers double as readable signposts in data files and pro-

grams. The choice of 4 characters is a good trade-off between storage space, fetch/compare/

store time, and name space size. We’ll honor Apple’s designers by adopting this scheme.

"PICT" is a good example of a standard structure graphics format (including raster images)

and its many uses (Inside Macintosh chapter "QuickDraw"). Macintosh provides Quick-

Draw routines in ROM to create, manipulate, and display PICTs. Any application can create

a PICT simply asking QuickDraw to record a sequence of drawing commands. Since it’s just

as easy to ask QuickDraw to render a PICT to a screen or a printer, it’s very effective to pass

them between programs, say from an illustrator to a word processor. An important feature

is the ability to store "comments" in a PICT which QuickDraw will ignore. Actually, it pass-

es them to your optional custom "comment handler".

EA IFF 85 Background for Designers: Previous Work

The OS-9/IFF Support Library 4-7

PostScript, Adobe’s print file standard, is a more general way to represent any print image

(which is a specification for putting marks on paper) PostScript Language Manual). In fact,

PostScript is a full-fledged programming language. To interpret a PostScript program is to

render a document on a raster output device. The language is defined in layers: a lexical

layer of identifiers, constants, and operators: a layer of reverse polish semantics including

scope rules and a way to define new subroutines: and a printing-specific layer of built-in

identifiers and operators for rendering graphic images. It is clearly a powerful (Turing

equivalent) image definition language. PICT and a subset of PostScript are candidates for

structured graphics standards.

A PostScript document can be printed on any raster output device (including a display) but

cannot generally be edited. That’s because the original flexibility and constraints have been

discarded. Besides, a PostScript program may use arbitrary computation to supply param-

eters like placement and size to each operator. A QuickDraw PICT, in comparison, is a more

restricted format of graphic primitives parameterized by constants. So a PICT can be edited

at the level of the primitives, e.g. move or thicken a line. It cannot be edited at the higher

level of, say, the bar chart data which generated the picture.

PostScript has another limitation: Not all kinds of data amount to marks on paper. A mu-

sical instrument description is one example. PostScript is just not geared for such uses.

"DIF" is another example of data being stored in a general format usable by future programs

(DIF Technical Specification). DIF is a format for spreadsheet data interchange. DIF and

PostScript are both expressed in plain ASCII text files. This is very handy for printing, de-

bugging, experimenting, and transmitting across modems. It can have substantial cost in

compaction and read/write work, depending on use. We won’t store IFF files this way but

we could define an ASCII alternate representation with a converter program.

InterScript is Xerox’ standard for interchange of editable documents (Introduction to Inter-

Script). It approaches a harder problem: How to represent editable word processor docu-

ments that may contain formatted text, pictures, cross-references like figure numbers, and

even highly specialized objects like mathematical equations? InterScript aims to define one

standard representation for each kind of information. Each InterScirpt-compatible editor is

supposed to preserve the objects it doesn’t understand and even maintain nested cross-ref-

erences. So a simple word processor would let you edit the text of a fancy document without

discarding the equations or disrupting the equation numbers.

Our task is similarly to store high level information and preserve as much content as prac-

tical while moving it between programs. But we need to span a larger universe of data types

and cannot expect to centrally define them all. Fortunately, we don’t need to make programs

preserve information that they don’t understand. And for better or worse, we don’t have to

tackle general-purpose cross-references yet.

Primitive Data Types: Alignment EA IFF 85

4-8 The OS-9/IFF Support Library

3. Primitive Data Types

Atomic components such as integers and characters that are interpretable directly by the

CPU are specified in one format for all processors. We chose a format that’s most convenient

for the Motorola MC68000 process (M68000 16/32-Bit Microprocessor Programmer’s Refer-

ence Manual).

N.B.: Part 3 dictates the format for "primitve’ data types where-and only where-used in the

overall file structure and standard kinds of chunks (Cf. Chucks). The number of such occur-

rences will be small enough that the costs of conversion, storage, and management of pro-

cessor-specific files would far exceed the costs of conversion during I/O by "foreign" pro-

grams. A particular data chunk may be specified with a different format for its internal

primitive types or with processor-or environment-specific variants if necessary to optimize

local usage. Since that hurts data interchange, it’s not recommended. (Cf. Designing New

Data Sections, in Part 4.)

Alignment

All data objects larger than a byte are aligned on even byte addresses relative to the start of

the file. This may require padding. Pad bytes are to be written as zeros, but don’t count on

that when reading.

This means that every odd-length "chunk" (see Below) must be padded so that the next one

will fall on an even boundary. Also, designers of structures to be stored in chunks should

include pad fields where needed to align every field larger than a byte. Zeros should be

stored in all the pad bytes.

Justification: Even-alignment causes a little extra work for files that are used only on cer-

tain processors but allows 68000 programs to construct and scan the data in memory and do

block I/O. You just add an occasional pad filed to data structures that you’re going to block

read/write or else stream read/write an extra byte. And the same source code works on all

processors. Unspecified alignment, on the other hand would force 68000 programs to (dis)-

assemble word and long-word data one byte at a time. Pretty cumbersome in a high level

language. And if you don’t conditionally compile that out for other processors, your won’t

gain anything.

Numbers

Numeric types supported are two’s complement binary integers in the format used by the

MC68000 processor-high byte first, high word first-the reverse of 8088 and 6502 format.

They could potentially include signed and unsigned 8,16, and 32 bit integers but the stan-

EA IFF 85 Primitive Data Types: Dates

The OS-9/IFF Support Library 4-9

dard only uses the following:

UBYTE 8 bits unsigned
WORD 16 bits signed
UWORD 16 bits
unsigned LONG 32 bits signed

The actual type definitions depend on the CPU and the compiler. In this document, we’ll

express data type definitions in the C programming language. (See C, A Reference Manual).

In 68000 Lattice C:

typedef unsigned char UBYTE; /* 8 bits unsigned */
typedef short WORD; /* 16 bits signed */
typedef unsigned short UWORD; /* 16 bits unsigned */
typedef long LONG; /* 32 bits signed */

The following character set is assumed wherever characters are used e.g. in text strings,

IDs, and TEXT chunks (see below).

Characters are encoded in 8-bit ASCII. Characters in the range NUL (hex 0) through DEL

(hex 7F) are well defined by the 7-bit ASCII standard. IFF uses the graphic group " "(SP,

hex 20) through "~" (hex 7E).

Most of the control character group hex 01 through hex 1F have no standard meaning in IFF.

The control character LF (hex 0A) is defined as a "newline" character. It denotes an inten-

tional line break, that is, a paragraph or line terminator. (There is no way to store an auto-

matic line break. That is strictly a function of the margins in the environment the text is

placed.) The control character ESC (hex 1B) is a reserved escape character under the rules

of ANSI standard 3.64-1979 American National Standard Additional Control Codes for Use

with ASCII, ISO standard 2022, and ISO/DIS standard 6429.2

 Characters in the range hex 7F through hex FF are not globally defined in IFF. They are

best left reserved for future standardization. But not that the FORM type FTXT (formatted

text) defines the meaning of these characters within FTXT forms. In particular, character

values hex 7F through 9F are control codes while characters hex A0 through hex FF are ex-

tended graphic characters like A, as per the ISO and ANSI standards cited above. (See the

supplementary document "FTXT" IFF Formatted Text.)

Dates

A "creation date" is defined as the date and time a stream of data bytes was created. (Some

systems call this a "last modified date".) Editing some data changes its creation date. Mov-

ing the data between volumes or machines does not.

The IFF standard date format will be one of those used in MS-DOS, Macintosh, or Amiga

Primitive Data Types: Type IDs EA IFF 85

4-10 The OS-9/IFF Support Library

DOS(probably a 32-bit unsigned number of seconds since a reference point). Issue: Investi-

gate these three.

Type IDs

A "type ID", "property name", "FORM type", or any other IFF identifier is a 32-bit value: the

concatenation of four ASCII characters in the range " "(SP, hex 20)through "~"(hex 7E).

Spaces (hex 20) should not precede printing characters; trailing spaces are ok. Control char-

acters are forbidden.

 typedef CHAR ID[4];

IDs are compared using a simple 32-bit case-dependent equality test.

Data section type IDs (aka FORM types) are restricted IDs. (Cf. Data Sections.) Since they

may be stored in filename extensions (Cf. Single Purpose Files) lower case letters and punc-

tuation marks are forbidden. Trailing spaces are ok.

Carefully choose those four characters when you pick a new ID. Make them mnemonic so

programmers can look at an interchange format file and figure out what kind of data it con-

tains. the name space makes it possible for developers scattered around the globe to gener-

ate ID values with minimal collisions so long as they choose specific names like "MUS4" in-

stead of general ones like "TYPE" and "FILE". EA will "register" new FORM type IDs and

format descriptions as they’re devised, but collisions will be improbable so there will be no

pressure on this "clearinghouse" process. Appendix A has a list of currently defined IDs.

Sometimes it’s necessary to make data format changes that aren’t backward compatible.

Since IDs are used to denote data formats in IFF, new IDs are chosen to denote revised for-

mats. Since programs won’t read chunks whose IDs they don’t recognize (see Chunks, be-

low), the new IDs keep old programs from stumbling over new data. The conventional way

to chose a "revision" ID is to increment the last character if it’s a digit or else change the last

character to a digit. E.g. first and second revisions of the ID "XY" would be "XY1" and "XY2".

Revisions of "CMAP" would be "CMA1" and CMA2".

Chunks

Chunks are the building blocks in the IFF structure. The form expressed as a C typedef is:

typedef struct {
 ID ckID;
 LONG ckSize; /* sizeof(ckData) */
 UBYTE ckData[/* ckSize */];
 } Chunk;

EA IFF 85 Primitive Data Types: Chunks

The OS-9/IFF Support Library 4-11

We can diagram an example chunk-a "CMAP" chunk containing 12 data bytes-like this:

The fixed header part means "Here’s a type ckID chunk with ckSize bytes of data."

The ckID identifies the format and purpose of the chunk. As a rule, a program must recog-

nize ckID to interpret ckData. It should skip over all unrecognized chunks. The ckID also

serves as a format version number as long as we pick new IDs to identify new formats of ck-

Data(see above).

The following ckIDs are universally reserved to identify chunks with particular IFF mean-

ings: "LIST" "FORM", "PROP", "CAT", and " ". The special ID " "(4 spaces) is a ckID for

"filler" chunks, that is chunks that fill space but have no meaningful contents. The IDs

"LIS1" through "LIS9", "FOR1" through "FOR9", and "CAT1" through "CAT9" are reserved

for future "version number" variations. All IFF-compatible software must account for these

23 chunk IDs. Appendix A has a list of predefined IDs.

The ckSize is a logical block size - how many data bytes are in ckData. If ckData is an odd

number of bytes long, a 0 pad byte follows which is not included in ckSize. (Cf. Alignment.)

A chunk’s total physical size is ckSize rounded up to an even number plus the size of the

header. So the smallest chunk is 8 bytes long with ckSize = 0. For the sake of following

chunks, programs must respect every chunk’s ckSize as a virtual end-of-file for reading its

ckData even if that data is malformed, e.g. it nested contents are truncated.

We can describe the syntax of a chunk as a regular expression with "#" representing the ck-

Size, i.e. the length of the following{braced} bytes. The "[0]" represents a sometimes needed

pad byte. (The regular expressions in this document are collected in Appendix a along with

an explanation of notation.)

Chunk ::= ID #{ UBYTE* } [0]

One chunk output technique is to stream write a chunk header, stream write the chunk con-

tents, then random access back to the header to fill in the size. Another technique is to make

a preliminary pass over the data to compute the size, then write it out all at once.

ckID:

ckSize:

ckData:

’CMAP’

12

0, 0, 0, 32

0, 0, 64, 0

0, 0, 64, 0

12

Primitive Data Types: Strings, String Chunks, and String Properties EA IFF 85

4-12 The OS-9/IFF Support Library

Strings, String Chunks, and String Properties

In a string ASCII text, LF denotes a forced line break (paragraph or line terminator). Other

control characters are not used. (Cf. Characters.)

The ckID for a chunk that contains a string of plain, unformatted text is "TEXT". As a prac-

tical matter, a text string should probably not be longer than 32767 bytes. The standard al-

lows up to 2^31 - 1 bytes.

When used as a data property (see below), a text string chunk may be 0 to 255 characters

long. Such a string is readily converted to a C string or a Pascal STRING[255]. The ckID of

a property must be the property name, not "TEXT".

When used as a part of a chunk or data property, restricted C string format is normally used.

That means 0 to 255 characters followed by a NUL byte (ASCII value 0).

 Data Properties

Data properties specify attributes for following (non-property) chunks. A data property es-

sentially says "identifier = value", for example "XY = (10,200)", telling something about fol-

lowing chunks. Properties may only appear inside data sections ("FORM" chunks, Cf. Data

Sections) and property sections ("PROP" chunks, Cf. Group PROP).

The form of a data property is a special case of Chunk. The ckID is a property name as well

as a property type. The ckSize should be small since data properties are intended to be ac-

cumulated in RAM when reading a file. (256 bytes is a reasonable upper bound.) Syntacti-

cally:

Property ::= Chunk

When designing a data object, use properties to describe context information like the size of

an image, even if they don’t vary in your program. Other programs will need this informa-

tion.

Think of property settings as assignments to variables in a programming language. Multi-

ple assignments are redundant and local assignments temporarily override global assign-

ments. The order of assignments doesn’t matter as long as they precede the affected chunk-

s.(Cf. LISTs, CATs, and Shared Properties.)

Each object type (FORM type) is a local name space for property IDs. Think of a "CMAP"

property in a "FORM ILBM" as the qualified ID "ILBM.CMAP". Property IDs specified when

an object type is designed (and therefore known to all clients) are called "standard" while

specialized ones added later are "nonstandard."

EA IFF 85 Primitive Data Types: Links

The OS-9/IFF Support Library 4-13

Links

Issue: A standard mechanism for "links" or "cross references" is very desirable for things like

combining images and sounds into animations. Perhaps we’ll define "link" chunks within

FORMs that refer to other FORMs or to specific chunks within the same and other FORMs.

This needs further work. EA IFF 1985 has no standard link mechanism.

For now, it may suffice to read a list of, say, musical instruments, and then just refer to them

within a musical score by index number.

File References

Issue: We may need a standard form for references to other files. A "file ref" could name a

directory and a file in the same type of operating system as the ref’s originator. Following

the reference would expect the file to be on some mounted volume. In a network environ-

ment, a file ref could name a server, too.

Issue: How can we express operating-system independent file refs?

Issue: What about a means to reference a portion of another file? Would this be a "file ref"

plus a reference to a "link" within the target file?

Data Sections: Group Form EA IFF 85

4-14 The OS-9/IFF Support Library

4. Data Sections

The first thing we need of a file is to check: Does it contain IFF data and, if so, does it contain

the kind of data we’re looking for? So we come to the notion of a "data section".

A "data section" or IFF "FORM" is one self-contained "data object" that might be stored in a

file by itself. It is one high level data object such as a picture or a sound effect. The IFF

structure "FORM" makes it self-identifying. It could be a composite object like a musical

score with nested musical instrument descriptions.

Group Form

A data section is a chunk with ckID "FORM" and this arrangement:

FORM ::= "FORM" #{ FormType (LocalChunk | FORM | LIST | CAT)* }
FormType ::= ID
LocalChunk ::= Property | Chunk

The ID "FORM" is a syntactic keyword like "struct" in C. Think of a "struct ILBM" contain-

ing a field "CMAP", if you see "FORM" you’ll know to expect a FORM type ID (the structure

name, "ILBM" in this example) and a particular contents arrangement or "syntax" (local

chunks, FORMs, LISTs and CATs). (LISTs and CATs are discussed in part 5, below.) A

"FORM ILBM", in particular, might contain a local chunk "CMAP", an "ILBM.CMAP" (to

use a qualified name).

 So the chunk ID "FORM" indicates a data section. It implies that the chunk contains an ID

and some number of nested chunks. In reading a FORM, like any other chunk, programs

must respect is ckSize as a virtual end-of-file for reading its contents, even if they’re trun-

cated.

The FormType (or FORM type) is a restricted ID that may not contain lower case letters or

punctuation characters. (Cf. Type IDs. CF. Single Purpose Files.)

The type-specific information in a FORM is composed of its "local chunks": data properties

and other chunks. Each FORM type is a local name space for local chunk IDs. So "CMAP"

local chunks in other FORM types may be unrelated to "ILBM.CMAP". More than that, each

FORM type defines semantic scope. If you know what a FORM ILBM is, you’ll know what

an ILBM.CMAP is.

Local chunks defined when the FORM type is designed (and therefore known to all clients

of this type) are called "standard" while specialized ones added later are "nonstandard".

Among the local chunks, property chunks give settings for various details like text font while

the other chunks supply the essential information. This distinction is not clear cut. A prop-

erty setting cancelled by a later setting of the same property has effect only on data chunks

in between. E.g. in the sequence:

EA IFF 85 Data Sections: Composite FORMs

The OS-9/IFF Support Library 4-15

prop1 = x (propN = value)* prop1 = y

where the propNs are not prop1. The setting prop1 = x has no effect.

The following universal chunk IDs are reserved inside any FORM: "LIST", "FORM",

"PROP", "CAT", " ", "LIST", "FOR1" through "FOR9", and "CAT1" through "CAT9". (Cf.

Chunks. Cf. Group LIST. Cf. Group PROP.) For clarity, these universal chunk names may

not be FORM type IDs, either.

Part 5, below, talks about grouping FORMs into LISTs and CATs. They let you group a

bunch of FORMs but don’t impose any particular meaning or constraints on the grouping.

Read on:

Composite FORMs

A FORM chunk inside a FORM is a full-fledged data section. This means you can build a

composite object like a multi-frame animation sequence from available picture FORMS and

sound effect FORMS. You can insert additional chunks with information like frame rate and

frame count.

Using composite FORMs, you leverage on existing programs that create and edit the compo-

nent FORMs. Those editors may even look into your composite object to copy out its type of

component, although it’ll be the rare program that’s fancy enough to do that. Such editors

are not allowed to replace their component objects within your composite object. That’s be-

cause the IFF standard lets you specify consistency requirements for the composite FORM

such as maintaining a count or a directory of the components. Only programs that are writ-

ten to uphold the rules of your FORM type should create or modify such FORMs.

Therefore, in designing a program that creates composite objects, you are strongly requested

to provide a facility for your users to import and export the nested FORMs: Import and ex-

port could move the data through a clipboard or a file.

Here are several existing FORM types and rules for defining new ones.

FTXT

An FTXT data section contains text with character formatting information like fonts and

faces. It has no paragraph or document formatting information like margins and page head-

ers. FORM FTXT is well matched to the text representation in Amiga’s intuition environ-

ment. See the supplemental document "FTXT" IFF Formatted Text.

ILBM

"ILBM" is an interLeavedBitMap image with color map: a machine-independent format for

raster images. FORM ILBM is the standard image file format for the Commodore-Amiga

computer and is useful in other environments, too. See the supplemental document "ILBM"

Data Sections: PICS EA IFF 85

4-16 The OS-9/IFF Support Library

IFF InterLeavedBitMap.

PICS

The data chunk inside a "PICS" data section had Id "PICT" and holds a QuickDraw picture.

Issue: Allow more than one PICT in a PICS? See Inside Macintosh chapter "QuickDraw" for

details on PICTs and how to create and display them on the Macintosh computer.

The only standard property for PICS is "XY", an optional property that indicates the position

of the PICT relative to "the big picture". The contents of an XY is a QuickDraw Point.

Note: PICT may be limited to Macintosh use, in which case there’ll be another format for

structured graphics in other environments.

Other Macintosh Resource Types

Some other Macintosh resource types could be adopted for use within IFF files: perhaps

MWRT, ICN, ICN#, and STR#.

Issue: Consider the candidates and reserve some more IDs.

Designing New Data Sections

Supplemental documents will define additional object types. A supplement needs to specify

the object’s purpose, its FORM type ID< the IDs and formats of standard local chunks, and

rules for generating and interpreting the data. It’s a good idea to supply typedefs and an ex-

ample source program that accesses the new object. See "ILBM" IFF InterleavedBitmap for

a good example.

Anyone can pick a new FORM type ID but should reserve it with Electronic Arts at their

earliest convenience. (Issue: EA contact person? Hand this off to another organization?)

While decentralized format definitions and extensions are possible in IFF, our preference is

to get design consensus by committee, implement a program to read and write it, perhaps

tune the format, and then publish the format with example code. Some organization should

remain in charge of answering questions and coordinating extensions to the format.

If it becomes necessary to revise the design of some data section, its FORM type ID will serve

as a version number (Cf. Type IDs). E.g. a revised "VDEO" data section could be called

"VDE1". But try to get by with compatible revisions within the existing FORM type.

In a new FORM type, the rules for primitive data types and word-alignment (Cf. primitive

Data Types) may be overridden for the contents of its local chunks-but not for the chunk

structure itself-if your documentation spells out the deviations. If machine-specific type

variants are needed, e.g. to store vast numbers of integers in reverse bit order, then outline

the conversion algorithm and indicate the variant inside each file, perhaps via different

FORM types. Needless to say, variations should be minimized.

EA IFF 85 Data Sections: Designing New Data Sections

The OS-9/IFF Support Library 4-17

In designing a FORM type, encapsulate all the data that other programs will need to inter-

pret your files. E.g. a raster graphics image should specify the image size even if your pro-

gram always uses 320 x 200 pixels x 3 bitplanes. Receiving programs are then empowered

to append or clip the image rectangle, to add or drop bitplanes, etc. This enables a lot more

compatibility.

Separate the central data (like musical notes) from specialized information (like note beams)

so simpler programs can extract the central parts during read-in. Leave room for expansion

so other programs can squeeze in new kinds of information (like lyrics). And remember to

keep the property chunks manageable short-let’s day <(this is underscored) 256 bytes.

When designing a data object, try to strike a good trade-off between a super-general format

and a highly-specialized one. Fit the details to at least one particular need, for example, a

raster image might as well store pixels in the current machine’s scan order. But add the kind

of generality that makes it usable with foreseeable hardware and software. E.g. use a whole

byte for each red, green, and blue color value even if this year’s computer has only 4-bit video

DACs. Think ahead and help other programs so long as the overhead is acceptable. E.g. run

compress a raster by scan line rather than as a unit so future programs can swap images by

scan line to and from secondary storage.

Try to design a general purpose "least common multiple" format that encompasses the needs

of many programs without getting too complicated. Let’s coalesce our uses around a few such

formats widely separated in the vast design space. Two factors make this flexibility and sim-

plicity practical. First, file storage space is getting very plentiful, so compaction is not a pri-

ority. Second, nearly any locally-performed data conversion work during file reading and

writing will be cheap compared to the I/O time.

It must be OK to copy a LIST or FORM or CAT intact, e.g. to incorporate it into a composite

FORM. So any kind of internal references within a FORM must be relative references. They

could be relative to the start of the containing FORM, relative from the referencing chunk,

or a sequence number into a collection.

With composite FORMs, you leverage on existing programs that create and edit the compo-

nents. If you write a program that created composite objects, please provide a facility for

your users to import and export the nested FORMs. The import and export functions may

move data through a separate file or a clipboard.

Finally, don’t forget to specify all implied rules in detail.

LISTs, CATs, and Shared Properties: Group CAT EA IFF 85

4-18 The OS-9/IFF Support Library

 5. LISTs, CATs, and Shared Properties

Data often needs to be grouped together like a list of icons. Sometimes a trick like arranging

little images into a big raster works, but generally they’ll need to be structured as a first

class group. The objects "LIST" and "CAT" are IFF-universal mechanisms for this purpose.

Property settings sometimes need to be shared over a list of similar objects. E.g. a list of

icons may share one color map. LIST provides a means called "PROP" to do this. One pur-

pose of a LIST is to define the scope of a PROP. A "CAT", on the other hand, is simply a con-

catenation of objects.

Simpler programs may skip LISTs and PROPs altogether and just handle FORMs and

CATs. All "fully-conforming" IFF programs also know about "CAT", "LIST", and "PROP".

Any program that reads a FORM inside a LIST must process shared PROPs to correctly in-

terpret that FORM.

Group CAT

A CAT is just an untyped group of data objects.

Structurally, a CAT is a chunk with chunk ID "CAT" containing a "Contents type" ID fol-

lowed by the nested objects. The ckSize of each contained chunk is essentially a relative

pointer to the next one.

CAT ::= "CAT" #{ ContentsType (FORM | LIST | CAT)* }
ContentsType ::= ID --a hint or an "abstract data type " ID

In reading a CAT, like any other chunk, programs must respect it’s ckSize as a virtual end-

of-file for reading the nested objects even if they’re malformed or truncated.

The "contents type" following the CAT’s ckSize indicates what kind of FORMs are inside. So

a CAT of ILBMs would store "ILBM" there. It’s just a hint. It may be used to store an "ab-

stract data type". A CAT could just have blank contents ID (" ") if it contains more than

one kind of FORM.

CAT defines only the format of the group. The group’s meaning is open to interpretation.

This is like a list in LISP: the structure of cells is predefined but the meaning of the contents

as, say, as association list depends on use. If you need a group with an enforced meaning (an

"abstract data type" or Smalltalk "subclass"), some consistency constraints, or additional

data chunks, use a composite FORM instead (Cf. Composite FORMs).

Since a CAT just means a concatenation of objects, CATs are rarely nested. Programs should

really merge CATs rather than nest them.

EA IFF 85 LISTs, CATs, and Shared Properties: Group LIST

The OS-9/IFF Support Library 4-19

Group LIST

A LIST defines a group very much like CAT but is also gives a scope for PROPs (see below).

And unlike CATs, LISTs should not be merged without understanding their contents.

Structurally, a LIST is a chunk with ckID "LIST" containing a "contents type" ID, optional

shared properties, and the nested contents (FORMs, LISTs, and CATs), in the order. The ck-

Size of each contained chunk is a relative pointer to the next one. A LIST is not an arbitrary

linked list - the cells are simple concatenated.

LIST ::= "LIST" #{ ContentsType PROP* (FORM | LIST | CAT)* }
ContentsType ::- ID

Group PROP

PROP chunks may appear in LISTs (not in FORMs or CATs). They supply shared properties

for the FORMs in that LIST. This ability to elevate some property settings to shared status

for a list of forms is useful for both indirection and compaction. E.g. a list of images with the

same size and colors can share one "size" property and one "color map" property. Individual

FORMs can override the shared settings.

The contents of a PROP is like a FORM with no data chunks:

 PROP ::= "PROP" # { FormType Property* }

It means, "here are the shared properties for FORM type <FormType>."

A LIST may have at most one PROP of a FORM type, and all the PROPs must appear before

any of the FORMs or nested LISTs and CATs. You can have subsequences of FORMs sharing

properties by making each subsequence a LIST.

Scoping: Think of property settings as variable bindings in nested blocks of a programming

LISTs, CATs, and Shared Properties: Properties For LIST EA IFF 85

4-20 The OS-9/IFF Support Library

language. Where in C you could write:

TEXT-FONT tect_font = Courier; /*program’s global default */

File(): {
 TEXT_FONT TEXT_FONT = TimesRoman; /* shared setting */

 {
 TEXT_FONT text_font = Helvetica; /* local setting */
 Print("Hello "); /* uses font Helvetica */
 }

 {
 Print("there."); /* uses font TimesRoman */
 }
 }

An IFF file could contain:

LIST {
 PROP TEXT {
 FONT {TimesRoman} /* shared setting */
 }

 FORM TEXT {
 FONT {Helvetica} /* local setting */
 CHRS {Hello } /* uses font Helvetica */
 }

 FORM TEXT {
 CHRS {there.} /* uses font TimesRoman */
 }
 }

The shared property assignments selectively override the reader’s global defaults, but only

for FORMs within the group. A FORMs own property assignments selectively override the

global and group-supplied values. So when reading an IFF file, keep property settings on a

stack. They’re designed to be small enough to hold in main memory.

Shared properties are semantically equivalent to copying those properties into each of the

nested FORMs right after their FORMs type IDs.

Properties For LIST

Optional "properties for LIST" store the origin of the list’s contents in a PROP chunk for the

EA IFF 85 LISTs, CATs, and Shared Properties: Properties For

The OS-9/IFF Support Library 4-21

fake FORM type "LIST". They are the properties originating program "OPGM", processor

family "OCPU", computer type "OCMP", computer serial number or network address "OSN",

and user name "UNAM". In our imperfect world, these could be called upon to distinguish

between unintended variations of a data format or to work around bugs in particular origi-

nating/receiving program pairs. Issue: Specify the format of these properties.

A creation data could also be stored in a property but let’s ask that file creating, editing, and

transporting programs maintain the correct date in the local file system. "Programs that

move files between machine types are expected to copy across the creation dates.

Standard File Structure: File Structure Overview EA IFF 85

4-22 The OS-9/IFF Support Library

6. Standard File Structure

File Structure Overview

An IFF file is just a single chunk of type FORM, LIST, or CAT. Therefore an IFF file can be

recognized by its first 4 bytes: "FORM", "LIST"< or "CAT". Any file contents after the

chunk’s end are to be ignored.

Since an IFF File can be a group of objects, programs that read/write single objects can com-

municate to an extent with programs that read/write groups. You’re encouraged to write

programs that handle all the objects in a LIST or CAT. A graphics editor, for example, could

process a list of pictures as a multiple page documents, one page at a time.

Programs should enforce IFF’s syntactic rules when reading and writing files. This ensure

robust data transfer. The public domain IFF reader/writer subroutine package does this for

you. A utility program "IFFCheck" is available that scans an IFF file and checks it for con-

formance to IFF’s syntactic rules. IFFCheck also prints an outline of the chunks in the file,

showing the ckID and ckSize of each. This is quite handy when building IFF programs. Ex-

ample programs are also available to show details of reading and writing IFF files.

A merge program "IFFJoin" will be available that logically appends IFF files into a single

CAT group. It "unwraps" each input file that is a CAT so that the combined file isn’t nested

CATs.

If we need to revise the IFF standard, the three anchoring IDs will be used as "version num-

bers". That’s why IDs "FOR1" through "FOR9", "LIS1" through "LIS9" and "CAT1" through

"CAT9" are reserved.

IFF formats are designed for reasonable performance with floppy disks. We achieve consid-

erable simplicity in the formats and programs by relying on the host file system rather than

defining universal grouping structures like directories for LIST contents. On huge storage

systems, IFF files could be leaf nodes in a file structure like a B-tree. Let’s hope the host file

system implements that for us!

There are two kinds of IFF files: single purpose files and scrap files. They differ in the in-

terpretation of multiple data objects and in the file’s external type.

Single Purpose Files

A single purpose IFF file is for normal "document" and "archive" storage. This is in contrast

with "scrap files"(see below) and temporary backing storage (non-interchange files).

The external file type (or filename extension, depending on the host file system) indicates

the file’s contents. It’s generally the FORM type of the data contained, hence the restrictions

EA IFF 85 Standard File Structure: Scrap Files

The OS-9/IFF Support Library 4-23

on FORM type IDs.

Programmers and users may pick an "intended use" type ad the filename extension to make

it easy to filter for the relevant files in a filename requestor. This is actually a "subclass" or

"subtype" that conveniently separates files of the same FORM type that have different uses.

Programs cannot demand conformity to its expected subtypes without overly restricting

data interchange since they cannot know about the subtypes to be used by future programs

that users will want to exchange data with.

Issue: How to generate 3-letter MS-DOS extensions from 4-letter FORM type IDs?

Most single purpose files will be a single FORM (perhaps a composite FORM like a musical

score containing nested FORMS like musical instrument descriptions). If it’s a LIST or a

CAT, programs should skip over unrecognized objects to read the recognized ones or the first

recognized one. Then a program that can read a single purpose file can read something out

of a "scrap file", too.

Scrap Files

A "scrap file" is for maximum interconnectivity in getting data between programs; the core

of a clipboard function. Scrap files may have type "IFF" or filename extension "IFF".

A scrap file is typically a CAT containing alternate representations of the same basic infor-

mation. Include as many alternatives as you can readily generate. This redundancy im-

proves interconnectivity in situations where we can’t make all programs read and write su-

per-general formats. [Inside Macintosh chapter "Scrap Manager".] E.g. a graphically-anno-

tated musical score might be supplemented by a stripped down 4-voice melody and by a text

(the lyrics).

The originating program should write the alternate representations in order of "preference":

most preferred (most comprehensive) type to least preferred (least comprehensive) type. A

receiving program should either use the first appearing type that it understands or search

for its own "preferred" type.

A scrap file should have at most one alternative of any type. (A LIST of same type objects is

OK as one of the alternatives). But don’t count on this when reading: ignore extra sections

of a type. Then a program that reads scrap files can read something out of single purpose

files.

Standard File Structure: Rules For Reader Programs EA IFF 85

4-24 The OS-9/IFF Support Library

Rules For Reader Programs

Here are some notes on building programs that read IFF files. If you use the standard IFF

reader module "IFFR.C", many of these rules and details will be automatically handled. (See

"Support Software" in Appendix A.) We recommend that you start from the example pro-

gram "ShowILBM.C". You should also read up on recursive descent parsers. (See, for exam-

ple, Compiler Construction, An Advanced Course.)

• The standard is very flexible so many programs can exchange data. This implies a

program has to scan the file and react to what’s actually there in whatever order it

appears. An IFF reader program is a parser.

• For interchange to really work, programs must be willing to do some conversion dur-

ing read-in . If the data isn’t exactly what you expect, say, the raster is smaller than

those created by your program, then adjust it. Similarly, your program could crop a

large picture, add or drop bitplanes, and create/discard a mask plane. The program

should give up gracefully on data that it can’t convert.

• If it doesn’t start with "FORM", "LIST", or "CAT", it’s not an IFF-85 file.

• For any chunk you encounter, you must recognize its type ID to understand its con-

tents.

• For any FORM chunk you encounter, you must recognize its FORM type ID to under-

stand the contained "local chunks". Even if you don’t recognize the FORM type, you

can still scan it for nested FORMs, LISTs, and CATs of interest.

• Don't’ forget to skip the pad byte after every odd-length chunk.

• Chunk types LIST, FORM, PROP, and CAT are generic groups. They always contain

a subytpe ID followed by chunks.

• Readers ought to handle a CAT of FORMs in a file. You may treat the FORMs like

document pages to sequence through or just use the first FORM.

• Simpler IFF readers completely skip LISTs. "Fully IFF-conforming" readers are those

that handle LISTs, even if just to read the first FORM from a file. If you do look into

a LIST, you must process shared properties (in PROP chunks) properly. The idea is

to get the correct data or none at all.

• The nicest readers are willing to look into unrecognized FORMs for nested FORM

types that they do recognize. For example, a musical score may contain nested instru-

ment descriptions and an animation file may contain still pictures.

EA IFF 85 Standard File Structure: Rules For Writer Programs

The OS-9/IFF Support Library 4-25

Note to programers: Processing PROP chunks is not simple! You’ll need some background in

interpreters with stack frames. If this is foreign to you, build programs that read/write only

one FORM per file. For the more intrepid programmers, the next paragraph summarizes

how to process LISTs and PROPs. See the general IFF reader module "IFFR.C" and the ex-

ample program "ShowILBM.C" for details.

Allocate a stack frame for every LIST and FORM you encounter and initialize it by copying

the stack frame of the parent LIST or FORM. At the top level, you’ll need a stack frame ini-

tialized to your program’s global defaults. While reading each LIST or FORM, store all en-

countered properties into the current stack frame. In the example ShowILBM, each stack

frame has a place for a bitmap header property ILBM.BMHD and a color map property ILB-

M.CMAP. When you finally get to the ILBM’s BODY chunk, use the property settings accu-

mulated in the current stack frame.

An alternate implementation would jut remember PROPs encountered, forgetting each on

reaching the end of its scope (the end of the containing LIST). When a FORM XXXX is en-

countered, scan the chunks in all remember PROPs XXXX, in order, as if they appeared be-

fore the chunks actually in the FORM XXXX. This gets trickier if you read FORMs inside of

FORMs.

Rules For Writer Programs

Here are some notes on building programs that write IFF files, which is much easier than

reading them. IF you use the standard IFF writer module "IFFW.C"(see "Support Software"

in Appendix A), many of these rules and details will automatically be enforced. See the ex-

ample program "RAW2ILBM.C".

• An IFF file is a single FORM, LIST, or CAT chunk.

• Any IFF-85 file must start with the 4 characters "FORM", "LIST", or "CAT", followed

by a LONG ckSize. There should be no data after the chunk end.

• Chunk types LIST, FORM, PROP, and CAT are generic. They always contain a sub-

type ID followed by chunks. These three IDs are universally reserved, as are "LIST"

through "LIS9", "FOR1" through "FOR9", "CAT1" through "CAT9", and " ".

• Don’t forget to write a 0 pad byte after each odd-length chunk.

• Four techniques for writing an IFF group: (1) build the data in a file mapped into vir-

tual memory. (2) build the data in memory blocks and use block I/O, (3) stream write

the data piecemeal and (don’t forget!) random access back to set the group length

count then stream write the data.

Standard File Structure: Rules For Writer Programs EA IFF 85

4-26 The OS-9/IFF Support Library

• Do not try to edit a file that you don’t know how to create. Programs may look into a

file and copy out nested FORMs of types that they recognize, but don’t edit and re-

place the nested FORMs and don’t add or remove them. That could make the contain-

ing structure inconsistent. You may write a new file containing items you copied (or

copied and modified) from another IFF file, but don’t copy structural parts you don’t

understand.

• You must adhere to the Syntax descriptions in Appendix A. E.g. PROPs may only ap-

pear inside LISTs.

EA IFF 85 Reference: Type Definitions

The OS-9/IFF Support Library 4-27

APPENDIX A: Reference

Type Definitions

The following C typedefs describe standard IFF structures. Declarations to use in practice

will vary with the CPU and compiler. For example, 68000 Lattice C produces efficient com-

parison code if we define ID as a "LONG". A macro "MAKEID" builds these IDs at compile

time.

/* Standard IFF types, expressed in 68000 Lattice C. */

typedef unsigned char UBYTE; /* 8 bits unsigned */
typedef short WORD; /* 16 bits signed */
typedef unsigned short UWORD; /* 16 bits unsigned */
typedef long LONG; /* 32 bits signed */

typedef char ID [4]; /* 4 chars in ‘ ’ through ‘~’ */

typedef struct {
 ID ckID;
 LONG ckSize; /* sizeof (ckData) */
 UBYTE ckData[/* ckSize */];
 } Chunk;

/* ID typedef and builder for 68000 Lattice C. */
typedef LONG ID; /* 4 chars in ‘ ’ through ‘~’ */
#define MakeID(a,b,c,d) ((a)<<24 | (b)<<16 | (c)<<8 | (d))

/* Globally reserved IDs. */
#define ID_FORM MakeID(‘F", ‘O’, ‘R’, ‘M’)
#define ID_LIST MakeID(‘L’, ‘I’, ‘S’, ‘T’)
#define ID_PROP MakeID(‘P’, ‘R’, ‘O’, ‘P’)
#define ID_CAT MakeID(‘C’, ‘A’, ‘T’, ‘ ’)
#define ID_FILLER MakeID(‘ ’, ‘ ’, ‘ ’, ‘ ’)

Reference: Syntax Definitions EA IFF 85

4-28 The OS-9/IFF Support Library

Syntax Definitions

Here’s a collection of the syntax definitions in this document.

Chunk ::= ID #{ UBYTE* } [0]

Property ::= Chunk

FORM ::= "FORM" #{ FormType (LocalChunk | FORM | LIST | CAT)* }
FormType ::= ID
LocalChunk ::= Property | Chunk

CAT ::= "CAT" #{ContentsType (FORM | LIST | CAT)* }
ContentsType::= ID -- a hint or an ’abstract data type" ID

LIST ::= "LIST" #{ ContentsType PROP* (FORM | LIST | CAT)* }
PROP ::= "PROP" #{ FormType Property* }

In this extended regular expression notation, the token "#" represents a ckSize LONG count

of the following {braced} data bytes. Literal items are shown in "quotes", [square bracketed

items] are conditional, and "*" means 0 or more instances. A sometimes-needed pad byte is

shown as "[0]".

EA IFF 85 Reference: Defined Chunk IDs

The OS-9/IFF Support Library 4-29

Defined Chunk IDs

This is a table of currently defined chunk IDs. We may also borrow some Macintosh IDs and

data formats.

Group chunk IDs

FORM, LIST, PROP, CAT.

Future revision group chunk IDs

FOR1 ... FOR9, LIS1 ... LIS9, CAT1 ... CAT9.

FORMtype IDs

(The above group chunk IDs may not be used for FORM type IDs.)

(Lower case letters and punctuation marks are forbidden in FORM type IDs.)

8SVX 8-bit sampled sound voice, ANBM animated bitmap, FNTR raster font,

FNTV vector font, FTXT formatted text, GSCR general-use musical score, ILBM

interleaved raster bitmap image, PDEF Deluxe Print page definition, PICS Mac-

intosh picture, PLBM (obsolete), USCR Uhuru Sound Software musical score,

UVOX Uhuru Sound Software Macintosh voice, SMUS simple musical score,

VDEO Deluxe Video Construction Set video.

Data chunk IDs

" ", TEXT, PICT.

PROP LIST property IDs

OPGM, OCPU, OCMP, OSN, UNAM.

Reference: Support Software EA IFF 85

4-30 The OS-9/IFF Support Library

Support Software

These public domain C source programs are available for use in building IFF-compatible

programs:

 IFF.H, IFFR.C, IFFW.C IFF reader and writer package. These modules han-

dle many of the details of reliably reading and writ-

ing IFF files.

 IFFCheck.C This handy utility program scans an IFF file, checks

that the contents are well formed, and prints an out-

line of the chunks.

Packer.H, Packer.C, UnPacker.C Run encoder and decoder used for ILBM files.

ILBM.H, ILMBR.C, ILBMW.C Reader and writer support routines for raster image

FORM ILBM. ILBMR calls IFFR and UnPacker.

ILBMW calls IFFW and Packer.

ShowILBM.C Example caller of IFFR and ILBMR modules. This

Commodore-Amiga program reads and displays a

FORM ILBM.

Raw2ILBM.C Example ILBM writer program. As a demonstration,

it reads a raw raster image file and writes the image

as a FORM ILBM file.

EA IFF 85 Reference: Example Diagrams

The OS-9/IFF Support Library 4-31

Example Diagrams

Here’s a box diagram for an example IFF file, a raster image FORM ILBM. This FORM con-

tains a bitmap header property chunk BMHD, a color map property chunk CMAP, and a ras-

ter data chunk BODY. This particular raster is 320 x 200 pixels x 3 bit planes uncompressed.

The "0" after the CMAP chunk represents a zero pad byte; included since the CMAP chunk

has an odd length. The text to the right of the diagram shows the outline that would be print-

ed by the IFFCheck utility program for this particular file.

320, 200, 0, 0, 3, 0, 0, 0, ...

’FORM’

0

.CMAP 21

.BODY 24000

FORM 24070 ILBM

.BMHD 20

24070

’ILBM’

24070

’BMHD’ 20

0, 0, 0; 32, 0, 0; 64, 0, 0, ...

’CMAP’ 21

0, 0, 0, ...

’BODY’ 24000

Reference: Example Diagrams EA IFF 85

4-32 The OS-9/IFF Support Library

This second diagram shows a LIST of two FORMs ILBM sharing a common BMHD property

and a common CMAP property. Again, the text on the right is an outline a la IFFCheck.

320, 200, 0, 0, 3, 0, 0, 0, ...

’LIST’

0

. .CMAP 21

. .BODY 24000

LIST 48114 AAAA

.PROP 62 ILBM

’AAAA’

48114

’BMHD’ 20

0, 0, 0; 32, 0, 0; 64, 0, 0, ...

’CMAP’ 21

0, 0, 0, ...

’BODY’ 24000

’FORM’

’ILBM’

24012

0, 0, 0, ...

’BODY’ 24000

’FORM’

’ILBM’

24012

’PROP’

’ILBM’

62

. .BODY 24000

. .BMHD 20

.FORM 24012 ILBM

.FORM 24012 ILBM

EA IFF 85 Standards Committee:

The OS-9/IFF Support Library 4-33

APPENDIX B: Standards Committee

The following people contributed to the design of this IFF standard:

Bob "Kodiak" Burns, Commodore-Amiga

R.J. Mical, Commodore-Amiga

Jerry Morrison, Electronic Arts

Greg Riker, Electronic Arts

Steve Shaw, Electronic Arts

Barry Walsh, Commodore-Amiga

end of chapter 4

NOTES: EA IFF 85

4-34 The OS-9/IFF Support Library

NOTES

EA IFF 85 NOTES:

The OS-9/IFF Support Library 4-35

NOTES: EA IFF 85

4-36 The OS-9/IFF Support Library

The OS-9/IFF Support Library 5-1

The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled

sounds. The format is quite flexible, allowing for the storage of monaural or multichannel

sampled sounds at a variety of sample rates and sample widths.

Audio IFF conforms to the "EA IFF 85" Standard for Interchange Format Files developed by

Electronic Arts.

Audio IFF is primarily an interchange format, although application designers should find it

flexible enough to use as a data storage format as well. If an application does choose to use

a document. This will facilitate the sharing of sound data between applications.

Audio IFF is the result of several meetings held with music developers over a period of ten

months in 1987-88. Apple Computer greatly appreciates the comments and cooperation pro-

vided by all developers who helped define this standard.

Another "EA IFF 85" sound storage format is "8SVX" IFF 8-bit Sampled Voice, by Electronic

Arts. "8SVX", which handles 8-bit monaural samples, is intended for use with a larger va-

riety of computers, sampled sound instruments, sound software applications, and high fidel-

ity recording devices.

AUDIO INTERCHANGE
FILE FORMAT:

"AIFF"

A Standard For Sample
Sound Files
Version 1.2

Apple Computer, Inc.

Data Types Audio Interchange File Format: "AIFF"

5-2 The OS-9/IFF Support Library

Data Types

A C-like language will be used to describe data structures in this document. The data types

used are listed below:

char: 8 bits, signed. A char can contain more than just ASCII charac-

ters. It can contain any number from -128 to 127 (inclusive).

unsigned char: 8 bits, unsigned. Contains any number from zero to 255 (inclu-

sive).

short: 16 bits, signed. Contains any number from -32,768(inclusive).

unsigned short: 16 bits, unsigned. Contains any number from zero to 65,535 (in-

clusive).

long: 32 bits, signed. Contains any number from -2,147,483,648 to

2,147,483,647(inclusive).

unsigned long: 32 bits, unsigned. Contains any number from zero to

4,294,967,295 (inclusive).

extended: 80 bits IEEE Standard 754 floating point number (Standard Ap-

ple Numeric Environment [SANE] data type Extended).

pstring: Pascal-style string, a one byte count followed by text bytes. The

total number of bytes in this data type should be even. A pad byte

can be added at the end of the text to accomplish this. This pad

byte is not reflected in the count.

ID : 32 bits, the concatenation of four printable ASCII character in the

range (SP, 0x20) through ‘~’ (0x7E). Spaces (0x20) cannot precede

printing characters; trailing spaces are allowed. Control charac-

ters are forbidden.

OSType: 32 bits. A concatenation of four characters, as define in Inside

Macintosh, vol II.

Constants

Decimal values are referred to as a string of digits, for example 123,0,100 are all decimal

numbers. Hexadecimal values are preceded by a 0x - e.g. 0x0A12,0x1,0x64.

Audio Interchange File Format: "AIFF" Data Organization

The OS-9/IFF Support Library 5-3

Data Organization

All data is stored in Motorola 68000 format. Data is organized as follows:

Referring to Audio IFF

The official name for this standard is Audio Interchange File Format. If an application pro-

gram needs to present the name of this format to a user, such as in a "Save as..." dialog box,

the name can be abbreviated to Audio IFF.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

msb lsb

msb lsb

msb

lsbbyte3byte2

byte1byte0

byte1byte0

char

short

long

File Structure Audio Interchange File Format: "AIFF"

5-4 The OS-9/IFF Support Library

File Structure

The "EAIFF85" Standard for Interchange Format Files defines an overall structure for

storing data in files. Audio IFF conforms to the "EAIFF85" standard. This document will

describe those portions of "EAIFF85" that are germane to Audio IFF. For a more complete

discussion of "EAIFF85", please refer to the document "EAIFF85" Standard for Inter-

change Format Files.

An "EAIFF85" file is made up of a number of chunks of data. Chunks are the building

blocks of "EAIFF85" files. A chunk consists of some header information followed by data:

A chunk can be represented using our C-like language in the following manner:

typedef struct {

 ID ckID; /* chunk ID */
 long ckSize; /* chunk Size */

 char ckData[]; /* data */

} Chunk;

ckID describes the format of the data portion a chunk. A program can determine how to in-

terpret the chunk data by examining ckID .

ckSize is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes

used by ckID and ckSize.

ckData contains the data stored in the chunk. The format of this data is determined by ckID .

If the data is an odd number of bytes in length, a zero pad byte must be added at the end.

The pad byte is not included in ckSize.

Note that an array with no size specification (e.g. char ckData[];) indicates a variable-sized ar-

ray in our C-like language. This differs from standard C.

ckID

ckSize

data
A chunk.

header info

Audio Interchange File Format: "AIFF" File Structure

The OS-9/IFF Support Library 5-5

An Audio IFF file is a collection of a number of different types of chunks. There is a Com-

mon Chunk which contains important parameters describing the sampled sound, such as

it’s length and sample rate. There is a Sound Data Chunk that contains the actual audio

samples. There are several other optional chunks that define markers, list instrument pa-

rameters, store application-specific information, etc. All of these chunks are described in de-

tail in later sections of this document.

The chunks in a Audio IFF file are grouped together in a container chunk. "EAIFF85" de-

fines a number of container chunks, but the one used by Audio IFF is called a FORM. A

FORM has the following format:

typedef struct {

 ID ckID;
 long ckSize;

 ID formType;
 char chunks [];

} Chunk;

ckID is always ‘FORM’. This indicates that this is a FORM chunk.

ckSize contains the size of data portion of the ‘FORM; chunk. Note that the data portion has

been broken into two parts, formType and chunks[].

formType describes what’s in the ‘FORM’ chunk. For Audio IFF files, formType is always ‘AIFF’.

This indicates that the chunks within the FORM pertain to sampled sound. A FORM chunk

of formType ’AIFF’ is called a FORM AIFF.

chunks are the chunks contained within the FORM. These chunks are called local chunks.

A FORM AIFF along with its local chunks make up an Audio IFF file.

File Structure Audio Interchange File Format: "AIFF"

5-6 The OS-9/IFF Support Library

Here is an example of a simple Audio IFF file. It consists of a file containing single FORM

AIFF which contains two local chunks, a Common Chunk and a Sound Data Chunk.

There are no restrictions on the ordering of local chunks within a FORM AIFF.

On an Apple //, the FORM AIFF is stored in a PRO DOS file. The file type is 0xCB and the

aux type is 0x0000.

On a Macintosh, the FORM AIFF is stored in the data fork of an Audio IFF file. The

Macintosh file type of an Audio IFF file is ‘AIFF’. This is the same as the formType of the

FORM AIFF.

Macintosh applications should not store any information in Audio IFF file’s resource fork,

as this information may not be preserved by all applications. Applications can use the Ap-

plication Specific Chunk, defined later in this document, to store extra information spe-

cific to their application.

On an operating system that uses file extensions, such as MS-DOS or UNIX, it is recom-

mended that Audio IFF file names have a ".AIF" extension.

A more detailed example of an AudioIFF file can be found in Appendix A. Please refer to

this example as often as necessary while reading the remainder of this document.

FORM AIFF Chunk

ckID = ’FORM’

formType = ’AIFF’

Common Chunk

Sound Data Chunk

ckID = ’COMM’

ckID = ’SSND’

Audio Interchange File Format: "AIFF" Local Chunk Types

The OS-9/IFF Support Library 5-7

Local Chunk Types

The formats of the different local chunk types found within a FORM AIFF are described in

the following sections. The ckIDs for each chunk are also defined.

There are two types of chunks, those that are required and those that are optional. The

Common Chunk is required. The Sound Data chunk is required if the sampled sound has

greater than zero length. All other chunks are optional. All applications that use FORM

AIFF must be able to read the required chunks, and can choose to selectively ignore the op-

tional chunks. A program the copies a FORM AIFF should copy all of the chunks in the

FORM AIFF.

To insure that this standard remains usable by all developers, only Apple Computer, Inc.

should define new chunk types for FORM AIFF. If you have suggestions for new chunk

types, Apple is happy to listen! Please refer to Appendix B for instructions to how to send

comments to Apple.

Common Chunk Audio Interchange File Format: "AIFF"

5-8 The OS-9/IFF Support Library

Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

#define CommonID ‘COMM’ /* ckID for Common Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 short numChannels;
 unsigned long numSampleFrames;
 short sampleSize;
 extended sampleRate;

} CommonChunk;

ckID is always ‘COMM’. ckSize is the size of the data portion of the chunk, in bytes. It does

not include the 8 bytes used by ckID and ckSize. For the Common Chunk, ckSize is always 18.

numChannels contains the number of audio channels for the sound. A value of 1 means mono-

phonic sound, 2 means stereo, and 4 means four channel sound, etc. Any number of audio

channels may be represented.

The actual sound samples are stored in another chunk, the Sound Data Chunk, which will

be described shortly. For multichannel sounds, single sample points from each channel are

interleaved. A set of interleaved sample points is called a sample frame. This is illustrated

below for the stereo case.

For monophonic sound, a sample frame is a single sample point.

ch 1 ch 2 ch 1 ch 2 ch 1 ch 2

Sample
Frame 0

Sample
Frame 1

Sample
Frame N

. . .

= one sample point

Audio Interchange File Format: "AIFF" Common Chunk

The OS-9/IFF Support Library 5-9

For multichannel sounds, the following conventions should be observed:

numSampleFrames contains the number of sample frames in the Sound Data Chunk. Note

that numSampleFrames is the number of sample frames, not the number of bytes nor the num-

ber of sample points in the Sound Data Chunk. The total number of sample points in the

file is numSampleFrames times numChannels.

sampleSize is the number of bits in each sample point. It can be any number from 1 to 32. The

format of a sample point will be described in the next section, the Sound Data Chunk.

sampleRate is the sample rate at which the sound is to be played back, in sample frames per

second.

One and only one Common Chunk is required in every FORM AIFF.

left

left

front
left

left

left

rear
right

surround

right

center

rear
left

right

center

right

right

front
right

center

surroundleft
center

right
center

1 2 3 4 5 6

stereo

3 channel

4 channel

6 channel

quad

Sound Data Chunk Audio Interchange File Format: "AIFF"

5-10 The OS-9/IFF Support Library

Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

#define SoundDataID ‘SSND’ /* ckID for Sound Data Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned long offset;
 unsigned long blockSize;
 unsigned char soundData[];

} SoundDataChunk;

ckID is always ‘SSND’. ckSize is the size of the data portion of the chunk, in bytes. It does not

include the 8 bytes used by ckID and ckSize.

offset determines where the first sample frame in the soundData starts. offset is in bytes. Most

applications won’t use offset and should set it to zero. Use for a non-zero offset is explained in

the Block-Aligning Sound Data section below.

blockSize is used in conjunction with offset for block-aligning sound data. It contains the size

in bytes of the blocks that sound data is aligned to. As with offset, most applications won’t

use blockSize and should set it to zero. More information on blockSize is in the Block-aligning

Sound Data section below.

soundData contains the sample frames that make up the sound. The number of sample frames

in the soundData is determined by the numSampleFrames parameter in the Common Chunk.

Audio Interchange File Format: "AIFF" Sound Data Chunk

The OS-9/IFF Support Library 5-11

Sample Points

Each sample point in a sample frame is a linear, 2’s complement value. The sample points

are from 1 to 32 bits wide, as determined by the sampleSize parameter in the Common

Chunk. Sample points are stored in an integral number of contiguous bytes. One to 8 bit

wide sample points are stored in one byte, 9 to 16 bit wide sample points are stored in two

bytes, 17 to 24 bit wide sample points are stored in 3 bytes, and 25 to 32 bit wide samples

are stored in 4 bytes. When the width of a sample point is less than a multiple of 8 bits, the

sample point data is left justified, with the remaining bits zeroed. An example case is illus-

trated below. A 12 bit sample point binary 101000010111, is stored left justified in two

bytes. The remaining bits are set to zero.

Sample Frames

Sample frames are stored contiguously in order of increasing time. The sample points with-

in a sample frame are packed together, there are no unused bytes between them. Likewise,

the sample frames are packed together with no pad bytes.

Block-Aligning Sound Data

There may be some applications that, to insure real time recording and playback of audio,

wish to align sampled sound data with fixed-size blocks. This can be accomplished with the

offset and blockSize parameters, as shown below.

In the above figure, the first sample frame starts at the beginning of block N. This is accom-

plished by skipping the first offset bytes of the soundData. Note too that the soundData array can

extend beyond valid sample frames, allowing the soundData array to end on a block boundary.

1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0

12 bit sample point
is left justified

right most
4 bits are

zero padded

unused sample frames unused

soundData[]

offset numSampleFrames sample frames

block N - 1 block N + 2block N + 1block N

blockSize bytes

Block-aligned sound data

Sound Data Chunk Audio Interchange File Format: "AIFF"

5-12 The OS-9/IFF Support Library

blockSize specifies the size in bytes of the block that is to be aligned to. A blockSize of zero in-

dicates that the sound data does not need to be block-aligned. Applications that don’t care

about block alignment should set blockSize and offset to zero when writing Audio IFF files.

Applications that write block-aligned sound data should set blockSize to the appropriate block

size. Applications that modify an existing Audio IFF file should try to preserve alignment

of the sound data, although this is not required. If an application doesn’t preserve align-

ment, it should set blockSize and offset to zero. If an application needs to realign sound data to

a different sized block, it should update blockSize and offset accordingly.

The Sound Data Chunk is required unless the numSampleFames field in the Common Chunk

is zero. A maximum of one Sound Data Chunk can appear in a FORM AIFF.

Audio Interchange File Format: "AIFF" Marker Chunk

The OS-9/IFF Support Library 5-13

Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data. Markers can

be used for whatever purposes an application desires. The Instrument Chunk, defined lat-

er in this document, uses markers to mark loop beginning and end points, for example.

Markers

A marker has the following format.

typedef short MarkerId;

typedef struct {

 MarkerId id;
 unsigned long position;
 pstring markerName;

} Marker;

id is a number that uniquely identifies the marker within a FORM AIFF. The id can be any

positive non-zero integer, as long as no other marker within the same FORM AIFF has the

same id.

The marker’s position in the sound data is determined by position. Markers conceptually fall

between two sample frames. A marker that falls before the first sample frame in the sound

data is at position zero, while a marker that falls between the first and second sample frame

in the sound data is a position 1. Note that the units for position are sample frames, not bytes

nor sample points.

markerName is a Pascal-style text string containing the name of the mark.

Note: Some "EAIFF85" files store strings as C-strings (text bytes followed by a null termi-

nating character) instead of Pascal-style strings. Audio IFF uses pstrings because they are

more efficiently skipped over when scanning through chunks. Using pstrings, a program can

skip over a string by adding the string count to the address of the first character. C strings

require that each character in the string be examined for the null terminator.

Sample Frames

position 0 position 12position 5

Marker Chunk Audio Interchange File Format: "AIFF"

5-14 The OS-9/IFF Support Library

Marker Chunk Format

The format for the data within a Marker Chunk is shown below.

#define MarkerID ‘MARK’ /* ckID for Marker Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned short numMarkers;
 Marker Markers[];

} MarkerChunk;

ckID is always ‘MARK’. ckSize is the size of the data portion of the chunk, in bytes. It does

not include the 8 bytes used by ckID and ckSize.

numMarkers is the number of markers in the Marker Chunk.

numMarkers , if non-zero, it is followed by the markers themselves. Because all fields in a

marker are an even number of bytes in length, the length of any marker will always be even.

Thus, markers are packed together with no unused bytes between them. The markers need

not be ordered in any particular manner.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a FORM

AIFF.

Audio Interchange File Format: "AIFF" Instrument Chunk

The OS-9/IFF Support Library 5-15

Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a sampler,

could use to play back the sound data.

Looping

Sound data can be looped, allowing a portion of the sound to be repeated in order to lengthen

the sound. The structure below describes a loop:

typedef struct {

 short playMode;
 MarkerId beginLoop;
 MarkerId endLoop;

} Loop;

A loop is marked with two points, a begin position and an end position. There are two ways

to play a loop, forward looping and forward/backward looping. In the case of forward loop-

ing, playback begins at the beginning of the sound, continues past the begin position and

continues to the end position, at which point playback restarts again at the begin position.

The segment between the begin and end position, called the loop segment, is played over

and over again, until interrupted by something, such as the release of a key on a sampling

instrument, for example.

With forward/backward looping, the loop segment is first played from the begin position to

the end position, and then played backwards from the end position back to the begin posi-

tion. This flip-flop pattern is repeated over and over again until interrupted.

playMode specifies which type of looping is to be performed.

#define NoLooping 0
#define ForwardLooping 1
#define ForwardBackwardLooping 2

If NoLooping is specified, then the loop points are ignored during playback.

beginLoop is a marker id that marks the begin position of the loop segment.

end positionbegin position

sample frames loop segment

Instrument Chunk Audio Interchange File Format: "AIFF"

5-16 The OS-9/IFF Support Library

endLoop marks the end position of a loop. The begin position must be less than the end posi-

tion. If this is not the case, then the loop segment has zero or negative length and no looping

takes place.

Instrument Chunk Format

The format of the data within an Instrument Chunk is described below.

#define InstrumentID ‘INST’ /* ckID for Instrument Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 char baseNote;
 char detune;
 char lowNote;
 char highNote;
 char lowVelocity;
 char highVelocity;
 short gain;
 Loop sustainLoop;
 Loop releaseLoop;

} Instrumentchunk;

ckID is always ‘INST’. ckSize is the size of the data portion of the chunk, in bytes. For the

InstrumentChunk, ckSize is always 20.

baseNote is the note at which the instrument plays back the sound data without pitch modifi-

cation. Units are MIDI (MIDI is an acronym for Musical Instrument Digital Interface) note

numbers, and are in the range 0 through 127. Middle C is 60.

detune determines how much the instrument should alter the pitch of the sound when it is

played back. Units are in cents (1/100 of a semitone) and range from -50 to +50. Negative

numbers mean that the pitch of the sound should be lowered, while positive numbers mean

that it should be raised.

lowNote and highNote specify the suggested range on a keyboard for a playback of the sound

data. The sound data should be played if the instrument is requested to play a note between

the low and high notes, inclusive. The base note does not have to be within this range. Units

for lowNote and highNote are MIDI note values.

lowVelocity and highVelocity specify the suggested range of velocities for playback of the sound

data. The sound data should be played if the note-on velocity is between low and high ve-

locity, inclusive. Units are MIDI velocity values, 1 (lowest velocity) through 127 (highest ve-

locity).

Audio Interchange File Format: "AIFF" Instrument Chunk

The OS-9/IFF Support Library 5-17

gain is the amount by which to change the gain of the sound when it is played. Units are deci-

bels. For example, 0 db means no change, 6 db means double the value of each sample point,

while -6db means halve the value of each sample point.

sustainLoop specifies a loop that is to be played when an instrument is sustaining a sound.

releaseLoop specifies a loop that is to be played when an instrument is in the release phase of

playing back a sound. The release phase usually occurs after a key on an instrument is re-

leased.

The InstrumentChunk is optional. No more than one InstrumentChunk can appear in a

FORM AIFF.

MIDI Data Chunk Audio Interchange File Format: "AIFF"

5-18 The OS-9/IFF Support Library

MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data (please refer to Musical Instrument

Digital Interface Specification 1.0, available from the International MIDI Association,

for more details on MIDI).

The primary purpose of this chunk is to store MIDI System Exclusive messages, although

other types of MIDI data can be stored in this block as well. As more instruments come on

the market, they will likely have parameters that have not been included in the Audio IFF

specification. The MIDI System Exclusive messages for these instruments may contain

many parameters that are not included in the Instrument Chunk. For example, a new

sampling instrument may have more than the two loops defined in the Instrument Chunk.

This MIDI System Exclusive message can be stored in the MIDI Data Chunk.

#define MIDDIDataID ‘MIDI’ /* ckID for MIDI Data Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned char MIDIdata[];

} MIDIDataChunk;

ckID is always ‘MIDI’. ckSize is the size of the data portion of the chunk, in bytes. It does not

include the 8 bytes used by ckID and ckSize.

MIDIData contains a stream of MIDI data.

The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in a FORM

AIFF. If MIDI System Exclusive messages for several instruments are to be stored in a

FORM AIFF, it is better to use one MIDI Data Chunk per instrument than one big MIDI

Data Chunk for all of the instruments.

Audio Interchange File Format: "AIFF" Audio Recording Chunk

The OS-9/IFF Support Library 5-19

Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording devices.

#define AudioRecordingID ‘AESD’ /* ckID for Audio Recording Chunk */

typedef struct {

 ID ckID;
 long ckSize;
 unsigned char AESChannelStatusData [24];

} AudioRecordingChunk;

ckID is always ‘AESD’. ckSize is the size of the data portion of the chunk, in bytes. For the

Audio Recording Chunk, ckSize is always 24.

The 24 bytes of AESChannelStatusData are specified in the AES Recommended Practice for

Digital Audio Engineering - Serial Transmission Format for Linearly Represented

Digital Audio Data, section 7.1, Channel Status Data. That document describes a format

for real-time digital transmission of digital audio between audio devices. This information

is duplicated in the Audio Recording Chunk for convenience. Of general interest would be

bits 2,3, and 4 of byte0, which describe recording emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may ap-

pear in a FORM AIFF.

Application Specific Chunk Audio Interchange File Format: "AIFF"

5-20 The OS-9/IFF Support Library

Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by manufacturers

of applications. For example, an application that edits sound might want to use this chunk

to store editor state parameters such as magnification levels, last cursor position, and the

like.

#define ApplicationSpecificID ‘APPL’ /* ckID for Application */
 /* Specific Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 OSType applicationSignature;
 char data[];

} ApplicationSpecificChunk;

ckID is always ‘APPL’. ckSize is the size of the data portion of the chunk, in bytes. It does not

include the 8 bytes used by ckID and ckSize.

applicationSignature identifies a particular application. For Macintosh applications, this will be

the application’s four character signature.

data is the data specific to the application.

The Application Specific Chunk is optional. Any number of Application Specific Chunks

may exist in a single FORM AIFF.

Audio Interchange File Format: "AIFF" Comments Chunk

The OS-9/IFF Support Library 5-21

Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EAIFF85" has an

Annotation Chunk that can be used for comments, but the Comments Chunk has two fea-

tures not found in the "EAIFF85" chunk. They are: 1) a timestamp for the comment; and 2)

a link to a marker.

Comment

A comment consists of a time stamp, marker id, and a text count followed by text.

typedef struct {

 unsigned long timeStamp;
 MarkerID marker;
 unsigned short count;
 char text;

} Comment;

timeStamp indicates when the comment was created. Units are the number of seconds since

January 1, 1904. (This time convention is the one used by the Macintosh. For procedures

that manipulate the time stamp, see The Operating System Utilities chapter in Inside Mac-

intosh, vol II).

A comment can be linked to a marker. This allows applications to store long descriptions of

markers as a comment. If the comment is referring to a marker, then marker is the ID of that

marker. Otherwise, marker is zero, indicating that this comment is not linked to a marker.

count is the length of the text that makes up the comment. This is a 16 bit quantity, allowing

much longer comments than would be available with a pstring.

text contains the comment itself. This text must be padded with a byte at the end to insure

that it is an even number of bytes in length. This pad byte, if present is not included in count.

Comments Chunk Format

#define CommentID ‘COMT’ /* ckID for Comments Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned short numComments;
 Comment comments;

} CommentsChunk;

Comments Chunk Audio Interchange File Format: "AIFF"

5-22 The OS-9/IFF Support Library

ckID is always ‘COMT’. ckSize is the size of the data portion of the chunk, in bytes. It does not

include the 8 bytes used by ckID and ckSize.

numComments contains the number of comments in the Comments Chunk. This is followed by

the comments themselves. Comments are always an even number of bytes in length, so

there is no padding between comments in the Comments Chunk.

The Comments Chunk is optional. No more than one Comments Chunk may appear in a

single FORM AIFF.

Audio Interchange File Format: "AIFF" Text Chunks - Name, Author, Copyright, Annotation

The OS-9/IFF Support Library 5-23

Text Chunks - Name, Author, Copyright, Annotation

These four chunks are included in the definition of every "EAAIFF85" file. All are text

chunks; their data portion consists solely of text. Each of these chunks is optional.

#define nameID ‘NAME’ /* ckID for Name Chunk. */
#define AuthorID ‘AUTH’ /* ckID for Author Chunk. */
#define CopyrightID ‘(c) ’ /* ckID for Copyright Chunk. */
#define AnnotationID ‘ANNO’ /* ckID for Annotation Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 char text [];

} TextChunk;

ckID is either ‘NAME ’, ‘AUTH ’, ‘(c) ’, or ‘ANNO’, depending on whether the chunk as a Name

Chunk, Author Chunk, Copyright Chunk, or Annotation Chunk, respectively. For the Copy-

right Chunk, the ‘c’ is lowercase and there is a space (0x20) after the close parenthesis.

ckSize is the size of the data portion of the chunk, in this case the text.

text contains pure ASCII characters. It is not a pstring nor a C string. The number of charac-

ters in text is determined by ckSize. The contents of text depend on the chunk, as described

below:

Name Chunk

text contains the name of the sampled sound. The Name Chunk is optional. No more than

one Name chunk may exist within a FORM AIFF.

Author Chunk

text contains one or more author names. An author in this case is the creator of a sampled

sound. The Author Chunk is optional. No more than one Author Chunk may exist within a

FORM AIFF.

Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. Text contains a date fol-

lowed by the copyright owner. The chunk ID ‘(c) ’ serves as the copyright characters ‘’. For

example, a Copyright Chunk containing the text "1988 Apple Computer, Inc." means "
1988 Apple Computer, Inc."

The Copyright Chunk is optional. No more than one Copyright Chunk may exist within a

Text Chunks - Name, Author, Copyright, Annotation Audio Interchange File Format: "AIFF"

5-24 The OS-9/IFF Support Library

FORM AIFF.

Annotation Chunk

text contains a comment. Use of this chunk is discouraged within FORM AIFF. The more

powerful Comments Chunk should be used instead. The Annotation Chunk is optional.

Many Annotation Chunks may exist within a FORM AIFF.

Audio Interchange File Format: "AIFF" Chunk Precedence

The OS-9/IFF Support Library 5-25

Chunk Precedence

Several of the local chunks for FORM AIFF may contain duplicate information. For exam-

ple, the Instrument Chunk defines loop points and MIDI system exclusive data in the

MIDI Data Chunk may also define loop points. What happens if these loop points are dif-

ferent? How is an application supposed to loop the sound?

Such conflicts are resolved by defining a precedence for chunks:

The Common Chunk has the highest precedence, while the Application Specific Chunk

has the lowest. Information in the Common Chunk always takes precedence over conflict-

ing information in any other chunk. The Application Specific Chunk always loses in con-

flicts with other chunks. By looking at the chunk hierarchy, for example, one sees that the

loop points in the Instrument Chunk take precedence over conflicting loop points found in

the MIDI Data Chunk.

It is the responsibility of applications that write data into the lower precedence chunks to

make sure that the higher precedence chunks are updated accordingly.

Common Chunk

Sound Data Chunk

Marker Chunk

Instrument Chunk

Comment Chunk

Name Chunk

Author Chunk

Copyright Chunk

Annotation Chunk

Audio Recording Chunk

MIDI Data Chunk

Application Specific Chunk Lowest Precedence

Highest Precedence

Appendix A - An Example Audio Interchange File Format: "AIFF"

5-26 The OS-9/IFF Support Library

Appendix A - An Example

Illustrated below is an example of a FORM AIFF. An Audio IFF file is simply a file contain-

ing a single FORM AIFF. On a Macintosh, the FORM AIFF is stored in the data fork of a

file and the file type is ‘AIFF’.

’FORM’
176516
’AIFF’

’COMM’
18

2
88200

16
44100.00

’MARK’
34

44100
8

88200

’INST’
20

60

’SSND’
176408

0
0

ch 1

2
1

’b’ ’e’ ’g’ ’ ’ ’l’ ’o’ ’o’ ’p’ 0
2

8 ’e’ ’n’ ’d’ ’ ’ ’l’ ’o’ ’o’ ’p’ 0

-3
57
63
1

127
6
1
1
2
0
-
-

ch 2 ch 1 ch 2. . .
first sample frame 88200th sample frame

ckID
ckSize

formType
ckID

ckSize
numChannels

numSampleFrames
sampleSize
sampleRate

ckID
ckSize

position
markerName

position

ckID
ckSize

baseNote

ckID
ckSize
offset

blockSize
soundData

numMarkers
id

id

markerName

detune
lowNote

highNote
lowVelocity

highVelocity
gain

sustainLoop.playMode
sustainLoop.beginLoop

sustainLoop.endLoop
releaseLoop.playMode

releaseLoop.beginLoop
releaseLoop.endLoop

Common
Chunk

Marker
Chunk

Instrument
Chunk

Sound Data
Chunk

FORM AIFF

Audio Interchange File Format: "AIFF" Appendix B - Sending comments to Apple Computer,

The OS-9/IFF Support Library 5-27

Appendix B - Sending comments to Apple Computer, Inc.

If you have suggestions for new chunks to be added to the Audio Interchange File Format,

please describe the chunk in as much detail as possible, and give an example of its use. Sug-

gestions for new FORMs, ways to group FORM AIFF’s into a bank, and new local chunks

are welcome. When sending in suggestions, be sure to mention that your comment refers to

the Audio Interchange File Format: "AIFF" document.

Send comments to :

Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, MS: 27-T

Cupertino, CA 95014 USA

References Audio Interchange File Format: "AIFF"

5-28 The OS-9/IFF Support Library

References

AES Recommended Practice for Digital audio Engineering - Serial Transmission

Format for Linearly Represented Digital Audio Data, Audio Engineering Society, 60

East 42nd Street, New York, New York 10165

MIDI: Musical Instrument Digital Interface, Specification 1.0, the International

MIDI Association.

"EA IFF 85" Standard for Interchange Format Files, Electronic Arts.

"8SVX" IFF 8-Bit Sampled Voice. Electronic Arts.

Inside Macintosh, Volume II. Apple Computer, Inc., Addison Wesley Publishing Compa-

ny, Inc., 1986.

Apple Numerics Manual, Addison Wesley Publishing Company, Inc., 1986

end of chapter 5

The OS-9/IFF Support Library 6-1

THE FOLLOWING CHANGES WERE MADE BETWEEN THE 0.90 VERSION AND

THE DRAFT 0.99 VERSION OF THE SPECIFICATION:

• Added Table of Contents, Preface, Introduction, explanation of CD-I IFF file structure.

• Added Appendices [A Quick Introduction to IFF, EA IFF 85 - Standard for Inter-

change Format Files, Audio Interchange File Format: "AIFF", Revision Log].

• Changed int type in Data Definition section to long in order to eliminate ambiguities

among different compilers.

• Modified bit packing scheme to have bits within a pixel right justified instead of left jus-

tified. Don’t care bits are now where they belong for CD-I in the msbs, not lsbs.

• Changed definition of IFF_COLOR (for CLUT entries) from 16 bits per color [48 bits per

pixel] to 8 bits per color [24 bits per pixel]. The specification can be extended later if there

is a need for 16 bit colors.

• Made cosmetic and stylistic changes to C code fragments.

• Changed names of all structs to simplify and standardize naming conventions.

• Corrected language in referring to IFF components - "sub-chunk" was an undefined term

and FORMs were omitted.

• Added mandatory FORM in each file for specifying the version number of the CD-I IFF

specification used to generate that file.

• Added field in IHDR for color mask in addition to transparency. [This moves to IPAR -

Revision Log

Revision Log Revision Log

6-2 The OS-9/IFF Support Library

see next item.]

• Moved many field from IHDR chunk to new optional IPAR chunk to simplify definition

of required parameters for an image. This will allow the use of optional parameters to

evolve without affecting the basic definition of a CD-I image.

• Added field in IHDR to indicate whether a DYUV image has one start value (in the head-

er) for all scan lines or whether each scan line has its own start value (in the YUVS

chunk). [Formerly, this distinction was made based upon a specific value of the field in

the header.]

• Added capability to represent RGB555 directly in Green Book format. This was done

since the RGB555 format for CD-I is structurally different from the generic RGBnnn for-

mat defined in this specification.

• Corrected definition of the field ih_rl_len in IHDR.

• Removed references to palette regions since this is not implemented in the current ver-

sion.

• Corrected C language description of variable length arrays for disk storage.

• Added warning about pad bytes generated by compiler treatment of data structures. This

specification, and library implementations should not depend upon specific compiler

practices for alignment of allocated storage. The reader and writer software is responsi-

ble for guaranteeing that no pad bytes are inserted or expected on files.

• Added not to USER FORM stating that it should be used only for text comments, not stor-

ing processing parameters.

• Eliminated requirement that the first pixel of each scan line in CLUT data be longword

aligned. Also removed mention of this alignment restriction in RGBnnn data.

• Filled in definition of DYUV and RL data formats.

• Removed reference to emphasis in audio section.

• Removed reference to IFF_MDL_QHY since it is not supported in this version.

• Adopted version 1.2 of AIFF specification from Apple Computer (instead of prior 1.1 ver-

sion).

THE FOLLOWING CHANGES WERE MADE BETWEEN THE DRAFT 0.99 VER-

SION AND THE RELEASED 0.99 VERSION OF THE SPECIFICATION:

• Added picture of CD-I IFF file format to "IFF for CD-I" section

Revision Log Revision Log

The OS-9/IFF Support Library 6-3

• Removed general capability for RGBnnn (along with the associated complex data pack-

ing scheme) and restricted it to just RGB888. While a contraction of capabilities for ex-

change of data, this will allow much simpler implementations of reading and writing

code, and eliminate the need to support formats which are not generally used in the CD-

I production process.

• Removed the VERS FORM, as it was semantically incorrect. Future revisions to FORM

and chunk definitions will be handled in the IFF standard manner - making new chunk

ids.

• Removed ihdr_compress field from IHDR chunk, since it was not supported and of question-

able utility.

• Tried to improve presentation of pixel ordering in IDAT description.

• Improved description of DYUV, CLUT, & RL data formats.

• Modified structure of RGB555 data to separate upper and lower bytes of pixel data into

2 portions.

• Removed USER FORM, as it was semantically incorrect.

• Added USER chunk for use within IMAG FORM for comments.

• Substantially revised name, order, and semantics of many fields in the IHDR chunk to

support the padding of scan line data. This is necessary to provide compatibility with

UCM functions which require longword alignment of the first pixel in a scan line. All of

this forced a fairly major revision in the definition and usage of the header fields.

• Renamed and renumbered the values for the ihdr_model field to allow precise specification

of the image coding in effect, rather than just the family of image coding. E.g., added

CLUT8, CLUT7, etc. ad values rather than just CLUTn.

• Added explanations of padding rules to each of the IDAT model descriptions.

end of chapter 6

Revision Log Revision Log

6-4 The OS-9/IFF Support Library

NOTES

