
OS-9 BASIC

User Manual

Copyright  1991 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optical, chemical, manual or otherwise is prohib-
ited, without written permission from Microware Systems Corporation.

This manual reflects Version 2.4 of Microware BASIC. Version 2.4 of
Microware BASIC is to be used with Version 2.4 or greater of the OS-9
operating system.

Revision G
Publication Date: January, 1991
Publication Editor: Walden Miller, Ellen Grant
Product Number: BAS-68-NA-68-MO

The information contained herein is believed to be accurate as of the date
of publication. However, Microware will not be liable for any damages,
including indirect or consequential, from use of the OS-9 operating system,
Microware-provided software or reliance on the accuracy of this
documentation. The information contained herein is subject to change
without notice.

The software described in this document is intended to be used on a single
computer system. Microware expressly prohibits any reproduction of the
software on tape, disk or any other medium except for backup purposes.
Distribution of this software, in part or whole, to any other party or on any
other system may constitute copyright infringements and misappropriation
of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have
questions concerning the above notice, the documentation and/or software,
please contact your OS-9 supplier.

OS-9, Personal OS-9, Professional OS-9, Basic09, and Microware Basic
are trademarks of Microware Systems Corp.
UNIX is a trademark of Bell Laboratories.

Microware Systems Corporation • 1900 N.W. 114th Street
Des Moines, Iowa 50325-7077 • Phone: 515/224-1929

Copyright and Revision
History

Disclaimer

Reproduction Notice

Trademarks

Introduction
Preface

i

Introduction

Microware BASIC is an enhanced structured Basic language programming
system. It was created for the 68000 Microprocessor.

In addition to the standard BASIC language statements and functions,
Microware BASIC includes many of the useful elements of the PASCAL
programming language. This allows programs to be modular,
well-structured, and use sophisticated data structures. It permits full access
to almost all of the OS-9 operating system commands and functions so it
can be used as a systems programming language.

Microware BASIC is unusual in that it is an interactive compiler. It has
the fast execution speed typical of compiler languages and the ease of use
and memory space efficiency typical of interpreter languages.

Microware BASIC includes a powerful text editor, a multi-pass compiler, a
run-time interpreter, a high-level interactive debugger, and a system
executive. Each of these components is carefully integrated so you see a
friendly, highly interactive programming resource. It provides all the tools
and helpful facilities needed for fast, accurate creation and testing of
structured programs.

These features make Microware BASIC an ideal language for many
applications: scientific, business, industrial control, and education.

Structured, recursive BASIC with Pascal-type enhancements:

 allows multiple, independent, named procedures
 procedures called by name with parameters
 multi-character, upper or lower case identifiers
 variables and line numbers local to procedures
 line numbers optional
 automatic linkage to ROM or RAM “library” procedures
 PACK command compacts program and provides security
 PRINT USING with FORTRAN-like format specifications

Microware BASIC Features

Introduction
Preface

ii

Extended Control Structures (with Unique Closure Elements):

 IF...THEN...[ELSE...] ENDIF
 FOR...TO...[STEP]...NEXT
 REPEAT...UNTIL...
 WHILE...DO...ENDWHILE
 LOOP...ENDLOOP
 EXITIF...THEN...ENDEXIT

High-speed, high-accuracy math:

 14 decimal-digit 64 bit binary floating point
 Full set of transcendentals (SIN, ASN, ACS, LOG, etc.)

Extended data structures:

 Five Basic data types: BYTE, INTEGER, REAL, BOOLEAN, and
STRING

 One, two, or three dimensional arrays
 User-defined complex structures and data types

Powerful interactive debugging and editing features:

 Integral, full-featured text editor
 Syntax error check upon line entry and procedure compile
 Trace mode reproduces original source statements
 Renumber command for line numbered procedures

Microware Basic was conceived in 1978 as a high-performance
programming language to demonstrate the capabilities of the 6809
microprocessor to efficiently run high-level languages. Microware BASIC
was developed at the same time as the 6809 under the auspices of the
architects of the 6809. It was originally titled Basic09. The project covered
almost two years, and incorporated the results of research in such areas as
interactive compilation, fast floating point arithmetic algorithms, storage
management, high-level symbolic debugging, and structured language
design. These innovations give Microware BASIC its speed, power, and
unique flavor.

Microware BASIC was commissioned by Motorola, Inc., Austin, Texas,
and developed by Microware Systems Corporation, Des Moines, Iowa.
Principal designers of Microware BASIC were Larry Crane, Robert
Doggett, Ken Kaplan, and Terry Ritter. The first release was in February,
1980.

Excellent feedback, thoughtful suggestions, and carefully documented bug
reports from Microware BASIC users all over the world have been
invaluable to the designers in their efforts to achieve the degree of
sophistication and reliability Microware BASIC has today.

The History of Microware
BASIC

Introduction
Preface

iii

This manual is divided into two parts: the BASIC Tutorial and the BASIC
Reference Manual.

The tutorial section is written for beginning programmers having little
experience with Pascal or other high level languages. Beginning
programmers should work through the examples given to help familiarize
themselves with Microware BASIC control structure.

Readers having adequate programming skills are urged to browse the
tutorial for a feeling of the Microware BASIC environment. A complete
index is provided for easy use of the reference section.

In this manual, Microware BASIC is referred to as BASIC, unless making
reference to other BASIC languages.

Concerning This Manual

OS-9 BASIC User Manual
Table of Contents

I

SECTION 1 THE BASIC TUTORIAL

Chapter 1

Introduction 1-1.
Getting Started 1-1.
Fundamental Commands 1-2.

Chapter 2

Naming Your Procedure 2-1.
Writing Your First Procedure 2-2.
The DIM Statement: Declaring Variables 2-4.
Variable Data Types 2-8.
Constants 2-8.
Operators 2-10.
Conditional Control: The IF..THEN Structure 2-12.
Looping Statements 2-13.
Editing Your Procedures 2-18.
Line Numbers and the GOTO Statement 2-24.
Putting It All Together 2-25.

Chapter 3

Introduction 3-1.
Arrays 3-1.
The TYPE Declaration 3-4.
External Files 3-4.
Subroutines 3-10.
Calling Procedures 3-12.
Command Line Parameters 3-14.
Formatted Output: The PRINT .. USING Statement 3-17.

Chapter 4

General Execution Performance of BASIC 4-1.
Optimum Use of Numeric Data Types 4-2.
Looping Quickly 4-2.
Optimum Use of Arrays and Data Structures 4-3.
The PACK Command 4-3.
Eliminating Constant Expressions and Sub-Expressions 4-3.
Fast Input and Output Functions 4-3.
Professional Programming Techniques 4-4.

Overview

Getting Started

Program Construction:
Complex Data Types and
Subroutines

Program Optimization

OS-9 BASIC User Manual
Table of Contents

II

SECTION 2 BASIC REFERENCE GUIDE

Chapter 5

System Mode Commands 5-1.
$ 5-3.
BYE (or <eof> character) 5-4.
CHD/CHX 5-4.
DIGITS 5-5.
DIR 5-5.
EDIT/E 5-6.
KILL/KILL* 5-6.
LIST/LIST* 5-7.
LOAD 5-7.
MEM 5-8.
PACK/PACK* 5-8.
RENAME 5-9.
RUN 5-10.
SAVE/SAVE* 5-10.

Chapter 6

Edit Mode Commands 6-1.
How the Editor Works 6-2.
Line-Number Oriented Editing 6-3.
String-Oriented Editing 6-4.

Chapter 7

Running Programs 7-1.
Execution Mode: Technically Speaking 7-2.

System Mode

Edit Mode

Execution Mode

OS-9 BASIC User Manual
Table of Contents

III

Chapter 8

Overview of Debug Mode 8-1.
$ 8-2.
BREAK 8-2.
CONT 8-3.
DEG/RAD 8-3.
DIR 8-4.
LET 8-4.
LIST 8-4.
PRINT 8-5.
Q 8-5.
STATE 8-5.
STEP 8-6.
TRON/TROFF 8-6.
Debugging Techniques 8-7.
Debug Mode as a Desk Calculator 8-8.

Chapter 9

Data Types 9-1.
Data Structures 9-1.
The Five Basic Data Types 9-2.
The BYTE Data Type 9-2.
The INTEGER Data Type 9-3.
The REAL Data Type 9-3.
Internal Representation of REAL Numbers 9-4.
The STRING Data Type 9-4.
The BOOLEAN Data Type 9-5.
Automatic Type Conversion 9-6.
Constants 9-6.
Numeric Constants 9-6.
Boolean Constants 9-7.
String Constants 9-7.
Variables 9-7.
Parameter Variables 9-8.
Arrays 9-9.
Complex Data Types 9-9.

Debug Mode

Data Types and Data
Structures

OS-9 BASIC User Manual
Table of Contents

IV

Chapter 10

Evaluation of Expressions 10-1.
Operators 10-2.
Operator Precedence 10-3.
Functions 10-4.

Chapter 11

Program Structure 11-1.
Assignment Statements 11-2.
LET 11-2.
POKE 11-3.
Control Statements 11-4.
IF..THEN..ELSE 11-4.
FOR..NEXT 11-5.
WHILE..DO 11-7.
REPEAT..UNTIL 11-8.
LOOP..ENDLOOP/EXITIF..ENDEXIT 11-9.
GOTO 11-10.
GOSUB..RETURN 11-11.
ON GOTO/ON GOSUB 11-12.
ON ERROR GOTO 11-13.
Execution Statements 11-15.
RUN 11-15.
KILL 11-18.
CHAIN 11-19.
SHELL 11-20.
END 11-21.
STOP 11-21.
BYE 11-22.
DIGITS 11-22.
ERROR 11-23.
PAUSE 11-23.
CHD/CHX 11-24.
DEG/RAD 11-24.
BASE0/BASE1 11-25.
TRON/TROFF 11-25.
Comment Statements 11-26.
REM/(* 11-26.
Declaration Statements 11-27.
DIM 11-27.
PARAM 11-29.
TYPE 11-30.

Expressions, Operators, and
Functions

Program Statements and
Structure

OS-9 BASIC User Manual
Table of Contents

V

Chapter 12

Files and Unified Input/Output 12-1.
I/O Paths 12-2.
INPUT 12-3.
PRINT 12-4.
OPEN 12-6.
CREATE 12-7.
CLOSE 12-8.
DELETE 12-9.
SEEK 12-10.
READ 12-11.
WRITE 12-12.
GET/PUT 12-13.
DATA/READ/RESTORE 12-16.
Formatted Output: The Print Using Statement 12-17.
Real Format 12-19.
Exponential Format 12-20.
Integer Format 12-21.
Hexadecimal Format 12-22.
String Format 12-23.
Boolean Format 12-24.
Control Specifications 12-25.
Repeat Groups 12-25.

Appendix A

Appendix B

Appendix C

Appendix D

Files and Unified
Input/Output

Sample Programs

Quick Reference

Basic Error Codes

RUNB

Section

1
The BASIC Tutorial

This section of the manual describes:

 how new Microware BASIC users can become comfortable with
programming BASIC

 how users get started programming BASIC

 complex data types and subroutines that you can use with
Microware BASIC

 how to obtain program optimization when executing your procedures

Chapter

1

1-1

Overview

This manual is designed for two purposes:

 to help new Microware BASIC users become comfortable with
programming in BASIC

 to serve as a reference for new and existing users

In order to do this, this manual is divided into two sections. The first
section is a user manual that explains how to create a program with BASIC
and how to use BASIC’s functions to make your programs better. The
second section is a reference manual.

Before using Microware BASIC, you should be familiar with OS-9. You
should be familiar with either the Using Personal OS-9 manual or the
Using Professional OS-9 manual. These manuals provide an understanding
of how OS-9 stores files as well as other useful information.

When you start your computer or log in to your account, the OS-9 prompt
is displayed. This manual uses a dollar sign ($) to represent the
OS-9 prompt.

To enter the BASIC environment, type basic at the $ prompt and press the
[Return] key. OS9 responds by printing:

$ basic

Copyright 1984 by Microware.

Reproduced under license

Microware Basic V2.4

Ready

B:

Important: If you are not running version 2.4 of BASIC, the version
number will be different.

Introduction

Getting Started

Overview
Chapter 1

1-2

The B: prompt indicates that you are in BASIC’s system mode. Microware
BASIC has four modes:

Mode: Description:

System Mode Used for executing system commands.

Edit Mode Used for creating and editing procedures.

Execution Mode Used for running procedures.

Debug Mode Used for testing procedures for errors

You must remember that BASIC does have different modes. You should be
aware that some commands only operate in one mode. Therefore, if you
execute a command that you feel should work and it does not, check that
you are in the proper mode.

These modes are all discussed in more detail in the appropriate sections. A
full description of each mode is located in the reference section of
this manual.

When you create procedures in BASIC, they are created in BASIC’s
workspace. The workspace is the memory area where procedures are
created or loaded, edited, and executed. The procedures in this area are not
automatically saved when you exit BASIC. Therefore, you must save any
files in your workspace before you exit BASIC.

There are several commands that you should know before beginning to
program in BASIC. These commands are as follows:

Command: Description:

BYE Exits BASIC.

DIR Lists procedures currently in your workspace.

EDIT Enters edit mode.

KILL Deletes a procedure from your workspace.

LOAD Loads files from the OS-9 file system to your workspace.

MEM Displays or requests workspace memory.

PACK Compresses a BASIC procedure into BASIC intermediate code.

SAVE Saves your procedures in the OS-9 file system.

Fundamental Commands

Overview
Chapter 1

1-3

BYE: Exiting BASIC

When you have finished using BASIC and have saved all procedures that
you want to save, you can exit BASIC by typing the command BYE at the
system prompt:

B: BYE

You are returned to your OS-9 shell prompt.

DIR: Listing Procedure Names in Your Workspace

The DIR command displays the names and sizes of all procedures in your
workspace. You can also use a carriage return while in system mode.

DIR displays a table of all procedure names with two numbers next to each
name. The first column, proc size, is the size of the corresponding
procedure. The data size column shows the amount of memory that the
procedure requires for its variables. For example:

B: DIR

 Name Proc–Size Data–Size

 testprog 226 66

 prog2 162 82

 exloop 220 74

 *readit 224 66

4266 free

Ready

B:

The last line shows the amount of free bytes of workspace memory
remaining. You may use this information to estimate how much memory
your program needs to run. You must have at least as much free memory as
the data size of the procedure(s) to be run. If a data size number is
followed by a question mark, you need more memory.

EDIT: Entering Edit Mode

When you enter the EDIT or E command, you exit system mode and enter
edit mode. To enter edit mode, type EDIT or E and the name of a procedure
file to edit:

e myprocedure

Overview
Chapter 1

1-4

If you do not enter a procedure file, BASIC assigns the name Program to
your procedure. The EDIT command is discussed in more detail in the
next chapter.

KILL: Deleting Procedures in Your Workspace

At any time, you may permanently erase one or all of your procedures in
your workspace by using the KILL command. KILL followed by a
procedure name erases the specified procedure. KILL* erases all procedures
in the workspace. For example:

Command: Description:

B: KILL prog1 Erases prog1 from workspace.

B: KILL* Erases all procedures from workspace.

LOAD: Loading Procedures

To retrieve a procedure from your current data directory, you can use the
LOAD command followed by the name of the file:

B: LOAD oldprog

This command loads the file oldprog into your workspace. If you have a
procedure in your workspace with the same name as one in the file, BASIC
uses the procedure loaded from the file.

MEM: Displaying or Requesting Workspace Memory

When you enter BASIC, OS-9 automatically allocates approximately 4K of
workspace memory for BASIC. If you need more memory, you can use the
MEM command to get additional memory, if the additional memory is
available. To use the MEM command, type MEM and the amount of memory
you want in bytes. For example:

MEM 20000

This command line requests 20K of memory. BASIC always rounds the
amount you request up to the next highest multiple of 256 bytes. If MEM
displays the following, the requested amount of memory is not available:

What?

Overview
Chapter 1

1-5

You can also use OS-9’s #<memory> option to specify more memory when
you enter BASIC. For example, to call BASIC with 16K of memory, enter
the following command:

$ basic #16k

PACK: Compressing Procedures

The PACK command compresses a BASIC procedure and places it in your
current execution directory. Depending on the number of comments, line
numbers, etc., packed procedures execute from 10% to 30% faster than
unpacked procedures. BASIC loads the packed procedure when you try to
run it after it has been packed. The following is an example of
using PACK:

B: PACK exloop

Important: Before you PACK a procedure, always SAVE it first. You
cannot load a packed file into your workspace. Packing a procedure
removes it from your workspace.

SAVE: Saving Procedures

When you exit BASIC, all unsaved procedures are erased. The SAVE
command allows you to save your programs.

You can use SAVE in a number of ways:

Command: Description:

Type SAVE by itself. BASIC creates a file with the name of the last edited or run
procedure in your current data directory. If a file already has this
name, BASIC returns the prompt: Rewrite?. If you respond y for yes,
it replaces the file previously stored in that space with the new
procedure. OS-9 does not allow two files with the same name in the
same directory. By answering n for no, you cancel the SAVE
command without changing the procedure in your workspace or the
file in your directory.

Type SAVE > and a file
name.

This saves the procedure in a file with the specified name.

Type SAVE* and a file
name.

This saves all procedures in your workspace in the specified file.

Type SAVE, followed by
one or more procedures,
followed by a >, followed
by a file name.

This saves the specified procedures in the specified file.

Important: If you exit from BASIC, your programs will not automatically
be saved. You must save them using one of these methods or they will
be lost.

Chapter

2

2-1

Getting Started

Programs in BASIC are called procedures. A procedure contains BASIC
instructions as specified by the BASIC language.

Procedures are created in edit mode. To enter edit mode, type e and the
name of the procedure you want to create:

B: e myprogram

Procedure names may contain from 1 to 28 upper or lower case letters,
numbers, or special characters (as listed below). While the file name may
begin with any of the following characters or digits, the file name must
contain at least one number or letter. Within these limits, a name may
contain any combination of the following:

Description: Character:

upper case letters A-Z

underscores _

lower case letters a-z

dollar signs $

numbers 0-9

periods .

If you do not specify a procedure name, BASIC assigns the name Program
to the new procedure.

BASIC responds with the following:

B: e myprogram

PROCEDURE myprogram

*

E:

BASIC prints the word PROCEDURE and the name of the procedure. This
is followed by an asterisk (*) signifying the current edit line in the
procedure. The last line displays the edit mode prompt, E: .

Naming Your Procedure

Getting Started
Chapter 2

2-2

In edit mode, the first character of each line is reserved for edit commands.
If you forget to type an edit command, BASIC responds with the
following prompt:

What?

The most important edit command is the [Space] character. Placing a
[Space] in the first character position saves the line of the procedure that
immediately follows as a BASIC statement.

Important: The edit commands are discussed later in this chapter. There is
also a chapter in the reference section which deals with the edit commands.

When writing your procedure, you will probably want to receive and print
data. You can use the INPUT statement to receive data and the PRINT
statement to print the data.

 INPUT accepts data during the execution of a procedure. The data is
normally read from your terminal (the standard input device).

 PRINT outputs the text or the values given on the print line. The output
is normally sent to the terminal (the standard output device).

Important: Both input and output can be redirected. This allows you to
read data from a file or print a file to the printer. For more information on
redirecting input and output, refer to either Using Personal OS–9 or Using
Professional OS–9.

With these two commands, you can write a simple procedure, myprogram.
This procedure asks you for your name and prints a message. The first line
of the procedure asks you to enter your name:

E: PRINT “type your name”

You must enter a space before the PRINT statement. If you forget to do
this, BASIC will not save your command. If entered correctly, when you
execute myprogram, the characters between the quotes will be printed on
the terminal screen.

Important: If you make a mistake while entering this procedure line, skip
ahead to the section in this chapter on editing procedures.

Because the user will try to enter their name, the next statement reads
their input:

E: INPUT name$

Writing Your First Procedure

Getting Started
Chapter 2

2-3

Once again, you must enter a space before the INPUT statement to save the
line. When this procedure is executed, this command causes Basic to wait
for a line of text to be received from the keyboard. BASIC accumulates
text from the keyboard, character by character, until a [Return] ends the
line. This text is saved in the memory reserved for the variable name$.

Important: Variables are discussed in more detail in a later section.

To finish this program, enter the final two lines:

E: PRINT “Hi, ”;name$;“. It’s been nice talking to you.”

*

E: END

The semicolon following the quote after “Hi,” tells BASIC that something
else is to be printed on this line. BASIC inserts the text that the variable
name$ represents. The next semicolon informs BASIC that there is more to
print on the same line.

When a PRINT statement contains multiple values, it prints the values
consecutively. You must separate each of these values by a comma or a
semicolon. If the separator is a comma, BASIC moves to the next
16-column tab stop before printing the next value. If the separator is a
semicolon, no space separates the fields.

Important: If you do not want to use the default tab stops, refer to the
description of the TAB command located in the command summary.

The END statement is optional. It tells BASIC to stop executing the
procedure and return to system mode. BASIC returns to system mode after
executing the last line of code within the procedure.

To list your procedure, type l*. This edit mode command lists
the procedure:

E: l*

PROCEDURE myprogram

 0000 PRINT “type your name”

 0012 INPUT name$

 0017 PRINT “Hi, “; name$; ”. It’s been nice talking to you.”

 0035 END

*

E:

Getting Started
Chapter 2

2-4

Important: The editor has added some information which you did not
type. The numbers to the left of the program are I-code addresses. These
are the actual memory locations where each line begins relative to the start
of the procedure. These numbers may appear strange because they are in
hexadecimal (base 16). The I-code addresses are important because when
BASIC finds an error in a procedure, it conveys as much information as it
has concerning the error. One such piece of information is the I-code
address. Basic automatically supplies I-code addresses.

Now, run the procedure. To run a procedure, you must be in system mode.
You can exit the editor and return to system mode by typing q:

E: q

READY

B:

Now type run myprogram or run . If you enter the RUN command without
a procedure name, BASIC executes the last edited procedure.

B: RUN myprogram

type your name

? Ellen

Hi, Ellen. It’s been nice talking to you.

READY

B:

Important: The question mark (?) prompt tells you that the program is
waiting for input.

Congratulations! You have just written and executed your first program
with Microware BASIC.

Procedures use variables to hold values during the execution of the
procedure. The value of a variable may change during execution. In the
example myprogram, name$ was used as a variable to hold the value Ellen.

There are two ways of declaring a variable:

 the DIM statement
 inferred declaration

The DIM statement declares the variable name and the type of data that is
assigned to it during the course of the procedure. The DIM statement must
occur before you use the variable in the program. This prevents a variable
from being defined with a default data type (inferred declaration). By
standard convention, the DIM statement is used in the first few lines of
a procedure.

The DIM Statement:
Declaring Variables

Getting Started
Chapter 2

2-5

The syntax for the DIM statement is as follows:

DIM <variable> [, <variable>] : <data type>

If you declare more than one variable as the same data type, separate the
variables with commas. If you declare more than one data type in the same
DIM statement, separate the <var>:<type> statements with semicolons. For
example:

DIM x,y,z: INTEGER; a,b,c: REAL

In this example, the variables x, y, and z are defined as integer values, and
a, b, and c are defined as real values.

If the DIM statement is not used and variables are present in a procedure,
the variables are declared with default data types. All undeclared string
variables must end in a dollar sign ($). These variables are assigned a
maximum length of 32 characters.

In the case of name$ in the example myprogram, name$ was declared as a
string variable with a length of 32 characters. If the character string
assigned to name$ is longer than 32 characters, only the first 32 characters
are accepted.

By default, all other variables used are declared as REAL numbers
regardless of the intent of the procedure.

Initializing Variables

Generally, you must initialize variables. BASIC assigns a certain space in
memory large enough to hold the declared type of data. Consequently, if
the variables are not initialized, the variable may contain just about any
value. This makes any operation depending on these variables to be
very unreliable.

You can use either of two assignment statements to initialize variables.

The LET statement has the following syntax:

LET <variable> := <value or constant>

For example, if you have the following command in your procedure, x
equals one:

LET x:=1

You could also enter the following:

LET x=1

Getting Started
Chapter 2

2-6

You can also use an implied statement. Implied statements have the
following syntax:

<variable> := <value or constant>

For example, if you have the following command in your procedure, y
equals ten:

y := 10

You could also enter the following:

y = 10

Naming Variables: Reserved Words

Variable names may be of any length, but you will probably want to keep
them short. This_is_a_legal_variable is legal, but tedious to type. Variable
names must conform to the following rules:

 Names must begin with either an underscore or letter.
 Names cannot contain embedded blanks or dollar signs.
 Names can end in a dollar sign.
 Names can contain any alphanumeric or underscores.
 Names may not be any BASIC reserved word.

Getting Started
Chapter 2

2-7

BASIC recognizes certain words as reserved. They cannot be used as
variable names. These reserved words are all commands and key words
used within BASIC statements:

Table 2.A
BASIC Reserved Words

ABS ACS ADDR AND

ASC ASN ATN BASE

BOOLEAN BYE BYTE CHAIN

CHD CHR$ CHX CLOSE

COS CREATE DATA DATE$

DEG DELETE DIM DIGITS

DIR DO ELSE END

ENDEXIT ENDIF ENDLOOP ENDWHILE

EOF ERR ERROR EXEC

EXITIF EXP FALSE FILSIZ

FIX FLOAT FOR GET

GOSUB GOTO IF INKEY

INPUT INT INTEGER KILL

LAND LEFT$ LEN LET

LNOT LOG LOG10 LOR

LOOP LXOR MID$ MOD

NEXT NOT ON OPEN

OR PARAM PAUSE PEEK

 PI POKE POS PRINT

PROCEDURE PUT RAD READ

REAL REM REPEAT RESTORE

RETURN RIGHT$ RND RUN

SEEK SGN SHELL SIN

SIZE SQ SQR SQRT

STEP STOP STR$ STRING

SUBSTR TAB TAN THEN

TO TRIM$ TROFF TRON

TRUE TYPE UNTIL UPDATE

USING VAL WHILE WRITE

XOR

Getting Started
Chapter 2

2-8

BASIC recognizes five data types:

Type: Description:

INTEGER Whole numbers (no decimal) ranging from –2,147,483,648 to
2,147,483,647.

REAL Floating point numbers (decimal point allowed) ranging from
±2.2 10 −308 to ±1.8 10 308.

BYTE Whole numbers (no decimal) ranging from 0 to 255.

STRING Letters, digits, and/or punctuation.

BOOLEAN True or False.

Important: Numbers may be INTEGER, REAL, or BYTE values. While
REAL numbers are the most versatile (that is, they have the greatest range
and can represent decimals), math operations involving them are relatively
slow. INTEGER and BYTE operations use less memory and are
executed faster.

A STRING is a variable length sequence of characters. An “empty”
STRING is a special case and contains no characters. A STRING may be
declared to have a specified length by using the DIM statement. This is
useful for saving memory space when 32 characters are not needed (the
default STRING size is 32 characters).

To declare a STRING length, type dim, followed by <variable name>:
STRING[len]. For example, to declare the variable word with a length of
five characters, you would type:

DIM word: STRING[5]

The BOOLEAN variable is most often used in conditional statements to
divert execution to certain parts of the procedure. If something is true, then
do this; otherwise, continue.

Important: For more information about data types, refer to the chapter on
data types and data structures.

Constants are frequently used in procedures to assign values to variables.
BASIC has rules that allow you to specify constants that correspond to the
five BASIC data types. There are three basic types of constants:

 numeric
 boolean
 string

Variable Data Types

Constants

Getting Started
Chapter 2

2-9

Numeric Constants

Numeric constants can be either REAL or INTEGER data types. If a
number constant includes a decimal point or uses the “E format”
exponential form, BASIC stores the number in REAL format, regardless of
whether the number could have been stored in INTEGER or BYTE format.
If you want a REAL constant, use a decimal point (for example, 12.0).
This is sometimes done if all other values in an expression are of type
REAL so that BASIC does not have to do a time-consuming type
conversion at run-time.

Numbers that do not have a decimal point but are too large to be
represented as integers are also stored in REAL format. The following are
examples of REAL constants.

Table 2.B
REAL Constraints

1.0 9.8433218 1.95E+12 10000000000

–.01 –999.000099 –99999.9E–33 5655.34532

Numbers that do not have a decimal point and are in the INTEGER range
are treated as INTEGER numbers. BASIC also accepts integer constants in
hexadecimal in the range 0 to $FFFFFFFF. Hex numbers must have a
leading dollar sign. The following are examples of INTEGER constants:

Table 2.C
INTEGER Constraints

12 –3000 64000 $20 $FFFE $0

BOOLEAN Constants

The two legal BOOLEAN constants are TRUE and FALSE:

DIM flag, state: BOOLEAN

flag := TRUE

state := FALSE

Getting Started
Chapter 2

2-10

STRING Constants

STRING constants consist of a sequence of any characters enclosed by
quotation marks. To represent a quotation mark within the string, use two
consecutive quotation marks (“”). An empty string can also be represented
by two consecutive quotation marks. The following are examples of
STRING constants:

“This is a STRING constant”

“” (a null string)

“This is the ““real”” thing”

An operator combines or compares values of operands: constants and
variables. Operators (except negation) take two operands and perform
some operation to produce a result. This result is generally the same type
as the operands. The table on the following page lists the operators
available and the types they accept and produce.

Operators have precedence which means they are evaluated in a specific
order (for example, multiplication is performed before addition). You can
use parentheses to override natural precedence. The compiler, however,
may remove extraneous parentheses. The legal operators are listed below,
in order from highest to lowest.

Table 2.D
Legal Operators

Highest Precedence NOT –(negate)

^ **

* /

+ –

> < <> = >= <=

AND

Lowest precedence OR XOR

Operators of equal precedence are shown on the same line, and are
evaluated left to right in expressions. The only exception to this rule is
exponentiation, which is evaluated right to left. Raising a negative number
to a power is not legal in BASIC.

Operators

Getting Started
Chapter 2

2-11

In the examples below, BASIC expressions on the left are evaluated as
indicated on the right. You may enter either form, but the compiler always
generates the simpler form on the left.

BASIC representation: Equivalent form

a:= b+c**2/d a:= b+((c**2)/d)

a:= b>c AND d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=e)

a:= (b+c+d)/e a:= ((b+c)+d)/e

a:= b**c**d/e a:= (b**(c**d))/e

a:= –(b)**2 a:= (–b)**2

a:=b=c a:= (b=c) (returns BOOLEAN value)

Operator: Function: Operand type: Result type:

– Negation NUMERIC NUMERIC

^ or ** Exponentiation NUMERIC (positive) NUMERIC

* Multiplication NUMERIC NUMERIC

/ Division NUMERIC NUMERIC

+ Addition NUMERIC NUMERIC

– Subtraction NUMERIC NUMERIC

NOT Logical Negation BOOLEAN BOOLEAN

AND Logical AND BOOLEAN BOOLEAN

OR Logical OR BOOLEAN BOOLEAN

XOR Logical EXCLUSIVE OR BOOLEAN BOOLEAN

+ Concatenation STRING STRING

= Equal to ANY BOOLEAN

<> or >< Not equal to ANY BOOLEAN

< Less than NUMERIC, STRING 1 BOOLEAN

<= or =< Less than or Equal NUMERIC, STRING 2 BOOLEAN

> Greater than NUMERIC, STRING 3 BOOLEAN

>= or => Greater than or Equal NUMERIC, STRING 4 BOOLEAN

When comparing strings, the ASCII collating sequence is used, so that 0 < 1 < ... < 9 < A < B<
... < Z < a < b< ... < z

Important: NUMERIC refers to either BYTE, INTEGER, or REAL types.

Getting Started
Chapter 2

2-12

The IF..THEN..ELSE structure is frequently used in programs. The syntax
is as follows:

IF <boolean> THEN

 <statement>

ELSE

 <statement>

ENDIF

This executes certain statements only if specified conditions exist. The
following example demonstrates the IF..THEN..ELSE structure:

PROCEDURE MESSAGE

 PRINT “Type your name.”

 INPUT name$

 PRINT “Would you like the message of the day, “;name$;”? (y/n)”

 INPUT answer$

 IF answer$ = “y” THEN

 PRINT “Space is the future”

 ELSE

 PRINT “Suit yourself.”

 ENDIF

 PRINT “Bye, “; name$; ”. It’s been nice talking to you.”

 END

This procedure prints one of two messages depending on your input. The
condition could also depend on a computed value. Also, there could be
many statements or procedures separating the THEN and ELSE segments
of the conditional. This example just shows one of the ways you can use
this structure.

You can also use the IF..THEN statement as a single statement:

IF <boolean> THEN <line#>

This sends the control of the procedure to the specified line number if the
control condition is met. You should rarely use the IF..THEN statement in
this way.

Important: Multiple ELSE statements are not considered errors by the
compiler (that is, they do not generate error signals). However, they do
produce irregular and non-reliable results.

Conditional Control: The
IF..THEN Structure

Getting Started
Chapter 2

2-13

When you write your programs, you may find that you want to repeat a
section of code several times. You can do this using a looping statement.
Loops cause repeated or conditional execution of the statements located
between the starting point and the ending point of the loop. Generally,
loops have one entry at the top and only one exit at the bottom. In this
sense, it becomes one statement, regardless of how many individual
statements it contains.

You can nest loops. This allows the internal statements to be executed even
more times. You should know at least what will happen on the first,
second, next to the last, and last passes through the looping structure. It is
usually during these passes when a procedure produces errors which can
halt execution.

BASIC supports four ways of adding loops into your program:

Type of loop: Description:

FOR..NEXT Executes code an exact number of times.

WHILE..DO Tests for a control variable before executing any code, and performs
only as long as the control statement remains true.

REPEAT..UNTIL Executes the code at least once regardless of the initial conditions,
and repeats the code as long as a control statement remains valid.

LOOP..ENDLOOP Tests one or more control variables anywhere within the loop (and
perhaps more than once).

Each loop structure is discussed in greater detail. When you write your
programs, you should use the most appropriate loop for what you want to
accomplish; each loop structure has its own advantages.

As a general comment about loops, the initialization placement is very
important. You can easily create an endless loop (a loop that does not end)
by forgetting to initialize variables or by placing the initialization in the
wrong place. This is especially true when changing from one type of loop
structure to another. You should make sure that you know what happens at
the beginning and end of each loop sequence. This helps reduce the chance
of creating an endless loop.

The FOR..NEXT Loop

The FOR..NEXT loop executes a set of statements a specific number of
times. A FOR..NEXT loop begins with the FOR statement. The FOR
statement initializes the loop, and the NEXT statement ends the loop. The
following is an example of a FOR..NEXT loop:

FOR x=1 TO 3

 PRINT “Hi There!”

NEXT x

Looping Statements

Getting Started
Chapter 2

2-14

This loop prints the string Hi There! three times. The first time BASIC
encounters the FOR statement, x equals 1 (FOR x=1). BASIC executes the
statement(s) within the loop, which in this example is a PRINT statement.
When it reaches the NEXT statement, it increments x and goes back to the
FOR statement. x now equals 2, so BASIC again executes the PRINT
statement and goes to the NEXT statement. Once again, x is incremented.
x now equals 3. BASIC executes the PRINT statement and goes to the
NEXT statement. This time when the NEXT statement increments x, x is
greater than three. Therefore, BASIC does not execute the PRINT
statement. Instead, it jumps to the statement that follows NEXT.

Using STEP Within a FOR..NEXT Loop

By default, the NEXT statement increments the variable by one each time.
If you want to increment the variable by a value other than one, you need
to include a STEP declaration in the FOR statement. For example:

FOR x=1 to 10 STEP 2

 PRINT “Hi There!”

NEXT x

The string Hi There! is printed five times because each time BASIC comes
to the NEXT statement, x is incremented by two. Therefore, after the first
pass through the loop, x equals three instead of two.

The value to STEP may be a positive or negative number, and it may be
either an integer or a real. If it is a real data type (for example, STEP .5)
the control variable must also be a real data type. The following is an
example of a real data type for the STEP value:

DIM x:REAL

FOR x=1 TO 5 STEP .5

 PRINT x

NEXT x

END

This example prints the value of x for each pass through the loop.

Getting Started
Chapter 2

2-15

The WHILE..DO Loop

The WHILE..DO loop tests for a control variable before executing any
code. It continues to loop as long as the control statement located in the
WHILE statement remains true. If the control statement in the WHILE
statement is false the first time it is encountered, the loop is not executed.
The WHILE..DO loop has the following syntax:

WHILE <boolean> DO

 .

 .

ENDWHILE

<boolean> may be an expression (such as x<5) or merely a BOOLEAN
variable (such as WHILE red DO).

The following is an example of a WHILE..DO loop:

x:=1

WHILE x<5 DO

 PRINT x

 x:=x+1

ENDWHILE

The first line is outside of the WHILE..DO loop, but it is important for this
loop because it initializes the value of x. The next line begins the loop. It
tells BASIC to test the value of x. If x is less than five, then the statements
inside the loop are executed. If the value of x is five or greater, the
statements inside the loop are not executed. Therefore, the output from this
loop looks like this:

1.

2.

3.

4.

Important: You must change the value of the conditional within the loop.
If you do not, the loop never exits. For example, the following is an
endless loop because the internal commands do not affect the
conditional statement:

a:= 5

WHILE a < 10 DO

 PRINT “This is an endless loop”

ENDWHILE

Getting Started
Chapter 2

2-16

The REPEAT..UNTIL Loop

Another loop statement is REPEAT..UNTIL. It is similar to the
WHILE..DO statement. The syntax is as follows:

REPEAT

 .

 .

UNTIL <boolean>

The major difference is that in a REPEAT..UNTIL statement, the
conditional statement is tested at the bottom of the loop. This means that
the statements within the loop are executed at least once, even if the
conditional statement is false the first time.

The following is an example of a loop using REPEAT..UNTIL:

x := 1

REPEAT

 PRINT x

 x := x+1

UNTIL x>10

Notice again that x is initialized outside of the loop. If it were initialized
inside of the loop, the loop would never end. The next statement, REPEAT,
begins the loop. The statements within the loop are always executed during
the first pass. The UNTIL statement tests the conditional value. If the
statement is false, the loop executes again. If the statement is true, the loop
is not executed again.

Because the variable is tested at the bottom of the loop, it usually has an
opposite test from one you would find in a WHILE loop. You can easily
introduce errors into your program when you change from a WHILE..DO
loop to a REPEAT..UNTIL loop by forgetting to change the
conditional statement.

Getting Started
Chapter 2

2-17

The LOOP..ENDLOOP Loop

The final type of loop structure available in BASIC is the
LOOP..ENDLOOP statement. It has no built-in control statement to test for
exit, so it uses an internal structure, the EXITIF..THEN statement. The
syntax for these two structures are as follows:

LOOP

 <statements>

 EXITIF <boolean> THEN

 <statements>

 ENDEXIT

 <statements>

ENDLOOP

The LOOP structure would execute endlessly without the EXITIF
construct. You can use the EXITIF structure as many times as needed
within a LOOP. In this way, you may exit a loop for different reasons. The
following is an example of a LOOP..ENDLOOP:

x := 1

LOOP

 PRINT “x is a small number”

 x := x +1

EXITIF x>3 THEN

 PRINT “x is now greater than three”

ENDEXIT

ENDLOOP

The execution of this procedure is similar to the REPEAT..UNTIL. The
loop is executed until x > 3. Then, the statement between the THEN and
the ENDEXIT is executed (PRINT). The loop is then exited.

You can omit the statement to be executed in the EXITIF loop. For
example, you could enter:

EXITIF x>3 THEN

ENDEXIT

This is known as a null statement because nothing occurs.

Getting Started
Chapter 2

2-18

The EXITIF..THEN structure may be used in any of the looping structures
to exit anywhere within the loop. This allows greater freedom in building
your procedures.

Once you have written a procedure, you can change it by using the editor.
There are a number of commands available in edit mode for this purpose.
They are as follows:

Command: Description:

<return> Moves the edit pointer forward one line.

+[<number>] Moves the edit pointer forward the specified number of lines (default
is 0).

+* Moves the edit pointer to the end of the procedure.

–[<number>] Moves the edit pointer back the specified number of lines.

–* Moves the edit pointer to the beginning of the procedure.

<space> <text> Inserts a line directly before the current line.

<space> <line#>
<text>

Inserts or replaces a numbered line.

<line#> <return> Moves edit pointer to specified line.

c[*]<delim><string1>
<delim><string2>
<delim>

Replaces <string1> with <string2> in the current line. If used with an
asterisk (*), the entire procedure is searched and replaced. <delim>
is a delimiter character that is not within either string.
For example:

c.why.why not?. Legal syntax
c?why?why not?? Illegal syntax: ? is in the string

d[*] [line#] Deletes the specified lin. eIf no line is specified, the current line is
delete. dIf a negative number is specified, the specified number of
lines before the current line are delete. The forms d–* or d+* are also
allowed. They delete all lines before or after the current line
respectively. d* deletes the entire procedure.

l[*] [<number>] Lists the specified number of lines from the current edit pointer. If the
number is negative, the specified number of lines before the current
line is displayed. l* lists the entire procedure.

q Quits the editor, and returns to system mode.

r[*] [<number>],
[<increment>]

Renumbers the numbered lines in a procedure. The r command
begins at the current line and renumbers the first numbered line
found with the specified number. After that, it increments the line
number by the specified increment. If an asterisk (*) is used, the
renumbering begins with the start of the procedure. This also
renumbers any references to line numbers (GOTO or IF..THEN
statements). The default values for renumbering are a starting value
of 100 with an increment of 10.

s[*] <string>

Searches for the indicated string on the current line. If an asterisk (*)
is used, the entire procedure is searched and the pointer is moved to
the first matching string. Delimiters () follow the same rules as
the c command.

<escape> Quits the editor.

Editing Your Procedures

Getting Started
Chapter 2

2-19

Using the Edit Mode Commands

To use the editor, you must be in edit mode. You can use these commands
to create, display, and edit the procedure mtable. This section goes step by
step. You should enter the commands on your own terminal.

First, enter the command e mtable from the system mode:

B: e mtable

When you have pressed return, the following is displayed:

PROCEDURE mtable

*

Now, enter the procedure. Notice that you can type the procedure all in
lower case characters. When the procedure is displayed, you will see that
all reserved words have been converted to upper case letters. Remember to
add a space before each line.

E: dim a,b: integer

*

E: a:=1

*

E: print

*

E: while a<10 do

*

E: b:=1

What?

The last two lines show what happens when you forget to add the <space>
command before a line. Just re-type the line and continue:

E: b:=1

*

E: while b<=10 do

*

E: print a; “ * “; b; “ = “; a*b; tab(mod(b,5)*13)

*

E: if pos>55 then print

*

E: ednif

 ednif

 ^

Error #000:027

*00AE ERR ednif

E:

Getting Started
Chapter 2

2-20

The last six lines of this section show what happens if you make a mistake
while typing in a command line. If this happens, enter an extra carriage
return and re-type the command line. The line containing the error can be
deleted later.

E:

*

E: endif

*

E: b:=b+1

*

E: endwhile

*

E: print

*

E: a:=a+1

*

E: endwhile

*

E: end

*

E:

Now that the procedure is entered, type q to exit edit mode:

E: q

Ready

To run the procedure, type run mtable:

B: run mtable

Error #000:051

Ready

Getting Started
Chapter 2

2-21

In this example, the procedure will not execute until the line containing the
error is deleted. Therefore, you should re-enter edit mode and use the l*
command to list your program:

B: e mtable

PROCEDURE mtable

*0000 DIM a,b:INTEGER

E:l*

*0000 DIM a,b:INTEGER

 0012 a:=1

 0020 PRINT

 0024 WHILE a<10 DO

 003A b:=1

 0048 WHILE b<=10 DO

 005E PRINT a; “ * “; b; “ = “; a*b; TAB(MOD(b,5)*13)

 0098 IF POS>55 THEN PRINT

 00B0 ERR ednif

 00BA ENDIF

 00BE b:=b+1

 00D2 ENDWHILE

 00DC PRINT

 00E0 a:=a+1

 00F4 ENDWHILE

 00FA END

E:

Notice that the first line of the procedure is displayed with an asterisk (*)
before the line. This points to the location of the edit pointer. Because the
error is on line nine of the procedure, you must move the edit pointer to
line nine. You can use the +<num> command to do this. If you redisplay
the procedure (with the l* command) after executing this command, the
asterisk (*) is now in front of the ninth line.

E: +9

*00B0 ERR ednif

The d command deletes the line:

E: d

*00B0 ENDIF

Getting Started
Chapter 2

2-22

You can now exit edit mode (by typing q) and run the procedure:

E: q

Ready

B: run mtable

1 * 1 = 1 1 * 2 = 2 1 * 3 = 3 1 * 4 = 4 1 * 5 = 5

1 * 6 = 6 1 * 7 = 7 1 * 8 = 8 1 * 9 = 9 1 * 10 = 10

2 * 1 = 2 2 * 2 = 4 2 * 3 = 6 2 * 4 = 8 2 * 5 = 10

2 * 6 = 12 2 * 7 = 14 2 * 8 = 16 2 * 9 = 18 2 * 10 = 20

3 * 1 = 3 3 * 2 = 6 3 * 3 = 9 3 * 4 = 12 3 * 5 = 15

3 * 6 = 18 3 * 7 = 21 3 * 8 = 24 3 * 9 = 27 3 * 10 = 30

4 * 1 = 4 4 * 2 = 8 4 * 3 = 12 4 * 4 = 16 4 * 5 = 20

4 * 6 = 24 4 * 7 = 28 4 * 8 = 32 4 * 9 = 36 4 * 10 = 40

5 * 1 = 5 5 * 2 = 10 5 * 3 = 15 5 * 4 = 20 5 * 5 = 25

5 * 6 = 30 5 * 7 = 35 5 * 8 = 40 5 * 9 = 45 5 * 10 = 50

6 * 1 = 6 6 * 2 = 12 6 * 3 = 18 6 * 4 = 24 6 * 5 = 30

6 * 6 = 36 6 * 7 = 42 6 * 8 = 48 6 * 9 = 54 6 * 10 = 60

7 * 1 = 7 7 * 2 = 14 7 * 3 = 21 7 * 4 = 28 7 * 5 = 35

7 * 6 = 42 7 * 7 = 49 7 * 8 = 56 7 * 9 = 63 7 * 10 = 70

8 * 1 = 8 8 * 2 = 16 8 * 3 = 24 8 * 4 = 32 8 * 5 = 40

8 * 6 = 48 8 * 7 = 56 8 * 8 = 64 8 * 9 = 72 8 * 10 = 80

9 * 1 = 9 9 * 2 = 18 9 * 3 = 27 9 * 4 = 36 9 * 5 = 45

9 * 6 = 54 9 * 7 = 63 9 * 8 = 72 9 * 9 = 81 9 * 10 = 90

Ready

B:

Getting Started
Chapter 2

2-23

The table looks pretty good now, but it needs a header. To add the header,
re-enter edit mode and display the procedure:

B: e mtable

PROCEDURE mtable

*0000 DIM a,b:INTEGER

E:l*

*0000 DIM a,b:INTEGER

 0012 a:=1

 0020 PRINT

 0024 WHILE a<10 DO

 003A b:=1

 0048 WHILE b<=10 DO

 005E PRINT a; “ * “; b; “ = “; a*b; TAB(MOD(b,5)*13)

 0098 IF POS>55 THEN PRINT

 00B0 ENDIF

 00B4 b:=b+1

 00C8 ENDWHILE

 00CE PRINT

 00D6 a:=a+1

 00EA ENDWHILE

 00F0 END

E:

Now, move the edit pointer to the first PRINT statement, and insert a line
to print a header:

E: +2

*0020 PRINT

E: print tab(13); “Multiplication Tables”

*0046 PRINT

E:

Important: Instead of using the +<num> command, you could enter a
carriage return twice.

If you list your program again, the new line is now the third line of
your procedure:

E:l*
 0000 DIM a,b:INTEGER
 0012 a:=1
 0020 PRINT TAB(13); “Multiplication Tables”
*0046 PRINT
 004A WHILE a<10 DO
 0060 b:=1
.
.
.
 0116 END

Getting Started
Chapter 2

2-24

Now when you run this procedure, your table will have a header.

You should experiment with the edit commands until you feel comfortable
with them. This makes creating and editing your procedures much easier.

As mentioned before, the listing Basic displays is not in the exact format as
the input. There is a space between the I-code address and the actual
procedure. This is reserved for line numbers.

Although line numbers are required in many versions of BASIC,
Microware BASIC does not require them. Line numbers must be positive
whole numbers in the range of 1 to 32767. They do not need to be used for
every line. They are generally used with a GOTO or GOSUB statement.

The GOTO statement transfers control unconditionally to the specified
line. For example:

 PROCEDURE gotodemo

 PRINT “This is a GOTO example”

 GOTO 10

 PRINT “This line will never be printed”

10 PRINT “It works but it’s dangerous”

 END

As you can see, a GOTO statement could cause certain parts of a
procedure’s code to be excluded from execution. There are generally better
ways of obtaining the same results without ever using a GOTO statement.

The use of the GOSUB statement is discussed in detail in Chapter 3.

Important: If at all possible, do not use line numbers or the GOTO
statement. Your procedures will be shorter, faster and easier to edit. There
is less chance of error. If you must use a GOTO statement, use it sparingly
and always document the code with a comment.

Line Numbers and the
GOTO Statement

Getting Started
Chapter 2

2-25

With the various control statements and editing commands presented in
this chapter, you should be able to write some fairly advanced procedures.

For example, the following program was written using just what you have
learned in this chapter:

PROCEDURE multable

 DIM less:BOOLEAN

 DIM answer$:STRING[1]

 DIM a,b,c:INTEGER

 PRINT “Type your name”

 INPUT name$

 PRINT “Hi, “; name$; “! “;

 PRINT “Would you like to print a multiplication table?”

 PRINT “Type y for yes. Type any other key for no.”

 INPUT answer$

 IF answer$=”y” THEN

 PRINT “What is the number you want to multiply?”

 PRINT “(please specify a number between 1 and 100)”

 INPUT a

 PRINT “What is the range of the multiplication table?”

 PRINT “(type 2 numbers between 1 and 50 separated by a space)”

 INPUT b,c

 WHILE b=c DO

 PRINT “Please specify two different numbers for the range.”

 INPUT b,c

 ENDWHILE

 PRINT “Thank you, “; name$

 count=1

 REPEAT

 PRINT b; “ * “; a; “ = “; b*a,

 IF POS>55 THEN PRINT

 ENDIF

 IF b>c THEN b:=b–1

 less=FALSE

 ELSE

 less=TRUE

 b:=b+1

 ENDIF

 UNTIL b=c+1 AND less OR b=c–1 AND NOT(less)

 ELSE PRINT “Your loss, “; name$

 ENDIF

 END

Putting It All Together

Chapter

3

3-1

Program Construction:
Complex Data Types and Subroutines

This chapter discusses the following complex data types and subroutines
that you can use with Microware BASIC:

 arrays
 TYPE declarations
 external files
 subroutines
 command line parameters
 formatted output

An array is an ordered sequence of data types. An array may be one, two,
or three dimensional.

 A vector is a one-dimensional array.
 A table is a two-dimensional array.
 A matrix is a three-dimensional array.

The size of an array depends on the number of elements in each dimension
and the size of each element. The array size is declared with a statement.

The syntax for declaring a vector array is as follows:

DIM <array name>(<rows>) : <DATA TYPE> [<num>]

For example, the following line declares the vector array names. Names
has 80 string elements. Each element is 30 characters:

DIM Names(80) : STRING [30]

The syntax for declaring a table array is as follows:

DIM <array name>(<rows>,<cols>) : <DATA TYPE> [<num>]

The following line declares the table array, PHONEBOOK, with the two
dimensions of 80 rows and 5 columns of STRING elements. Each element
is 30 characters.

DIM Phonebook(80,5): STRING [30]

Introduction

Arrays

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-2

The syntax for declaring a matrix array is as follows:

DIM <array name>(<rows>,<cols>,<depth>) : <DATA TYPE> [<num>]

The following line declares the matrix array, Route, with three dimensions
of 5 rows, 5 columns, and 5 depth INTEGER elements. Each element is
25 integers:

DIM Route(5,5,5) : INTEGER [25]

Like variables, you must initialize each array before you use it.

The following procedure initializes Phonebook to null values:

PROCEDURE init

 DIM Phonebook(80,5): STRING [30]

 DIM x,y : INTEGER

 FOR x := 1 TO 80

 FOR y := 1 TO 5

 Phonebook(x,y) = “”

 NEXT y

 NEXT x

 END

You should initialize numeric array elements to zero in the same manner.

Once an array is initialized, it can be loaded in various ways. The simplest
way is to assign individual element’s values by an assignment statement
which references the specified element:

Phonebook(1,1) := “Larry Crane”

Phonebook(1,2) := “unlisted”

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-3

Although this is simple, it is extremely time consuming. Instead, you can
use a looping structure and the INPUT statement to load the array:

PROCEDURE Addphone

 DIM Phonebook(80,5):STRING[30]

 DIM x,y:INTEGER

 DIM done:BOOLEAN

 DATA “NAME”,“PHONE”,“ADDRESS”,“CITY, STATE”,“ZIP CODE”

 done:=FALSE

 x:=1

 WHILE NOT(done) AND x<=80 DO

 FOR y=1 TO 5

 READ prompt$

 PRINT “ENTER ”; prompt$

 INPUT Phonebook(x,y)

 NEXT y

 INPUT “If finished, type ”“done”“, otherwise <return>.”,flag$

 IF flag$=“done” THEN

 done:=TRUE

 ELSE

 x:=x+1

 ENDIF

 ENDWHILE

 END

In this procedure, the DATA and READ statements are used. The READ
statement reads sequentially from the DATA statements output list. When
the list is exhausted, it starts reading from the beginning of the list again.
In this case, Addphone uses the READ statement to change prompts for
each element of the array.

For more information on the DATA and READ statements, refer to the
appropriate reference section.

Notice the INPUT statement following the FOR..NEXT structure:

INPUT “If finished, type ”“done”“, otherwise

<return>.”,flag$

This INPUT statement prints out the character string instead of the regular
question mark (?) prompt. This eliminates an extra PRINT statement.

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-4

While the Addphone procedure is adequate for storing names and phone
numbers, an array of varying data types and sizes is more efficient. In the
Phonebook array, each element is thirty characters long, regardless of the
use of the field. A phone number field rarely needs to be greater than
twenty digits. A zip code can be held in nine.

By using the TYPE declaration, BASIC creates user-defined data types. A
user-defined data type may consist of any of combination of the five basic
data types, arrays, and other user-defined data types. For example:

TYPE rec=street:STRING[30];cityst:STRING[30];zip:STRING[9]

TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec

DIM Phonebook(80) : ENTRY

This example is functionally the same array as in Addphone. However, it is
smaller and easier to access. By labeling each field with a descriptive
name, there is no doubt as to what is stored there.

Each field within an element is referred to by the array name and the
number of the element, followed by a period, followed by the field name
(or names each separated by a period):

Phonebook(32).address.zip := 50311

Once you have defined and accessed variable length records, you need to
save them for future use. The current Addphone program only holds the
memory of the phone number while it is running.

To save the input information, you must open an external file. You can
then place information in this external file.

OS-9 supports two types of files:

 Sequential files hold records containing ASCII characters. There can be
any number of characters within a record. There can be any number of
records in a file (within the limits of your disk). Records are separated
by a carriage return.

 Random access files contain records that store data in the same manner
as BASIC; in binary. There are no carriage returns to indicate the end of
a record. Records must be of a fixed size. There may be any number of
records in the file (within the limits of your disk).

The TYPE Declaration

External Files

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-5

Sequential Files

Sequential files are generally used for text files because of the way data is
accessed. To store data in a sequential file, BASIC supports two
commands: READ and WRITE.

 The READ command reads characters from a file until it encounters a
carriage return.

 The WRITE command sends each character in the record to the file and
then sends a carriage return to indicate the end of record.

Sequential files must be read one record at a time, starting from where the
file pointer is positioned. Because of the way data is stored in sequential
files, the only way to position the file pointer is to read or write a record.

To access the third record of a sequential file, you must either read the first
two records or rewrite them to place the file pointer at the beginning of the
third record. If you were to rewrite the first record with a new record that is
larger than the original, you will also write over the beginning of the
second record. Obviously, this could cause many problems.

To effectively edit sequential files, you must use a text editor (word
processor, etc.).

Random Access Files

To store data in a random access file, BASIC supports two commands:

 The PUT command puts a record in the specified place in your file.
 The GET command retrieves the record.

The PUT and the GET statements have the same syntax:

PUT <path no. var> <data struct>

GET <path no. var> <data struct>

You can access data elements in a random access file individually. The
BASIC functions SEEK and SIZE can be used together to locate and place
the file pointer at the beginning of any element. Through proper use of
these functions, you can GET the record you want or PUT any record
where you want it.

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-6

Creating Files

Before you can access a file, you must first create it. The syntax of the
CREATE statement is as follows:

CREATE # <int or byte var> , “ <path> ”: <access mode>

For example, the following command creates the file datafile in the
/h0/USR/ELLEN directory:

CREATE #A “/h0/usr/ellen/datafile”: WRITE

This statement creates the specified file (datafile) and opens a path
number to access it. The CREATE statement assigns a path number to a
variable. The variable must be either an INTEGER or BYTE data type.
The access mode may be any of the following:

Access mode: Description:

WRITE Only allows you to send (WRITE/PUT) data to the file.

UPDATE Allows you to send and receive data (WRITE/PUT and READ/GET).

EXEC Stores machine language code to be executed. It is rarely used
except by advanced BASIC programmers.

When a file is created, it has a length of zero. It expands automatically as
you send data to it.

Closing Files

When you open a path to a file, you must close it. Notice the line at
the end:

CLOSE #file

The CLOSE statement closes the specified path number. Never close a path
that you did not open, unless absolutely required.

A New Phonebook Example

The following procedure creates a random access file to hold Phonebook
records. It assigns the prompted values to the individual Phonebook data
fields one at a time. It places the entire data structure into the file at
one time.

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-7

PROCEDURE Phonebook

 TYPE rec=street:STRING[30];cityst:STRING[30];zip:STRING[9]

 TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec

 DIM Phonebook : ENTRY

 DIM file : INTEGER

 CREATE #file, “phonebook”: UPDATE

 PRINT “Enter the information asked for by the prompt”

 PRINT “If information not available, hit <return>”

 REPEAT

 INPUT “name: ”, Phonebook.name

 INPUT “phone number: ”, Phonebook.phone

 INPUT “street address: ”, Phonebook.address.street

 INPUT “city, state: ”, Phonebook.address.cityst

 INPUT “zip code: ”, Phonebook.address.zip

 PUT #file, Phonebook

 PRINT “If finished, type ”“done”“.”

 INPUT “Otherwise hit the <return> ”, done$

 UNTIL done$ = “done”

 CLOSE #file

 END

This works if the Phonebook file does not yet exist. However, trying to
CREATE an already existing file causes an error (#218).

To access an already existing file, use the OPEN statement. The OPEN
statement has the same syntax as the CREATE statement:

OPEN # <int or byte var> ,“ <path> ”: access mode

There are five access modes that the OPEN statement uses:

Access mode: Description:

READ Reads data from a file.

WRITE Writes data from a file.

UPDATE Allows you to read and write to a file.

EXEC Looks for and stores your file in your execution directory.

DIR Opens a directory for read only.

You can OPEN a file in more than one mode, if the combination is valid.
For example:

OPEN #file, “example”: READ + EXEC

Important: DIR and either WRITE or UPDATE causes an error. READ +

WRITE is the same as UPDATE.

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-8

Using A Random Access File

To illustrate the access capabilities of random access files, examine
this procedure:

 PROCEDURE Phonebook
 TYPE rec=street:STRING[30];cityst:STRING[30];zip:STRING[9]
 TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
 DIM Phonebook : ENTRY
 DIM file,record : INTEGER
 DIM flag : BOOLEAN
 flag = TRUE
 ON ERROR GOTO 100
 CREATE #file, “phonebook”: UPDATE
 flag = FALSE
100 IF flag THEN OPEN #file, “phonebook”: UPDATE
 ENDIF
 ON ERROR
 REPEAT
 PRINT “Would you like to add or access entries?”
 PRINT “Or are you finished for now?”
 INPUT “Type ”“add”“, ”“access”” or ”“done”“.”, answer$
 IF answer$ = “add” THEN
 SEEK #file, FILSIZ (#file)
 PRINT “If information not available, hit <return>”
 REPEAT
 INPUT “name: ”, Phonebook.name
 INPUT “phone number: ”, Phonebook.phone
 INPUT “street address: ”, Phonebook.address.street
 INPUT “city, state: ”, Phonebook.address.cityst
 INPUT “zip code: ”, Phonebook.address.zip
 PUT #file, Phonebook
 PRINT “If finished, type ”“done”“.”
 INPUT “Otherwise hit the <return> ”, done$
 UNTIL done$ = “done”
 ELSE
 IF answer$ = “access” THEN
 REPEAT
 INPUT “What number record would you like?”, record
 SEEK #file, SIZE (Phonebook) * (record – 1)
 GET #file, Phonebook
 PRINT “name: ”, Phonebook.name
 PRINT “phone number: ”, Phonebook.phone
 PRINT “street address: ”, Phonebook.address.street
 PRINT “city, state: ”, Phonebook.address.cityst
 PRINT “zip code: ”, Phonebook.address.zip
 PRINT “If finished, type ”“done”“.”
 INPUT “Otherwise hit the <return> ”, done$
 UNTIL done$ = “done”
 ENDIF
 ENDIF
 UNTIL answer$ = “done”
 CLOSE #file

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-9

Important: The BASIC statement ON ERROR GOTO gives control to the
specified line if an error occurs. In this case, it bypasses the problem of
recreating an existing file:

 flag = TRUE

 ON ERROR GOTO 100

 CREATE #file, “phonebook”: UPDATE

 flag = FALSE

100 IF flag THEN OPEN #file, “phonebook”: UPDATE

 ENDIF

Normally, when an error occurs, the procedure terminates, and BASIC
changes to debug mode. A FALSE value is assigned to flag between the
CREATE and IF..THEN OPEN structure. This assures that only one of the
two access statements (OPEN or CREATE) is executed.

The ON ERROR without the GOTO effectively turns off the previous ON
ERROR statement. This is important, because any other error that might
occur would otherwise be routed to line 100.

Because you can use this procedure to both read and write to the
phonebook file, you must access the file in UPDATE mode.

By prompting for one of three conditions (add, access, or done), you can
channel control to any of these conditions. By placing this control structure
within a REPEAT loop, you may add and access entries in the same
session. By adding REPEAT loops within add and access sections of the
code, you may add or access as many records as desired.

The SEEK statement allows access to the records. In the add loop, the file
pointer is moved to the end of file with the following command:

SEEK #file, FILSIZ (#file)

The SEEK command positions the file pointer directly after the specified
number of bytes. The FILSIZ function returns the size of the file specified
by its path. Consequently, by using both together, the file pointer is
positioned at the end of file.

In the access loop, the SEEK command positions the file pointer at the
beginning of the user-specified record. For simplicity, this procedure uses
numbers to specify records (first record, second record, etc.). The BASIC
function, SIZE, returns the size of the specified data structure. By
multiplying this size by one less than the desired record, the file pointer is
correctly positioned:

SEEK #file, SIZE (Phonebook) * (record – 1)

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-10

The phonebook procedure is unnecessarily complex. When you repeatedly
use a portion of a procedure, place it in a subroutine. Generally,
subroutines clarify code or avoid repeating the same code throughout a
procedure. In the previous program, you can place the add and access loops
in subroutines to improve clarity.

The GOSUB statement accesses subroutines. The syntax for this structure
is as follows:

GOSUB <line#>

<line#> (subroutine)

 RETURN

The GOSUB statement unconditionally passes control to the specified line.
Basic continues to execute sequentially from that point until the RETURN
statement is encountered. Control is then returned to the line immediately
following the GOSUB statement.

Basic supports a related statement that provides better use of subroutines:
ON..GOSUB. The syntax for this statement is as follows:

 ON <int expr> GOSUB {<line#>, <line#>}

<line#> (subroutine)

 RETURN

<line#> (subroutine)

 RETURN

ON..GOSUB evaluates the <int expr> and transfers control to the
corresponding line number in the list following GOSUB. If the integer is
greater than the number of line numbers in the list, no subroutine is
executed. When used with a previous input statement, ON..GOSUB can
run menu-type subroutines.

Subroutines

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-11

The following is the Phonebook procedure written with subroutines.

 PROCEDURE Phonebook
 TYPE rec=street:STRING[30];cityst:STRING[30];zip:STRING[9]
 TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
 DIM Phonebook:ENTRY; flag:BOOLEAN; file,answer,record:INTEGER
 flag := TRUE
 ON ERROR GOTO 100
 CREATE #file, “phonebook”: UPDATE
 flag := FALSE

100 IF flag THEN OPEN #file, “phonebook”: UPDATE
 ENDIF
 ON ERROR
 REPEAT
 PRINT “TYPE: ”“1”” for add new entries“
 PRINT ” “”2”“ for access previous entries”
 PRINT “ ”“3”” for exit procedure“
 INPUT answer
 ON answer GOSUB 200,300
 UNTIL answer = 3
 CLOSE #file
 END

200 SEEK #file, FILSIZ (#file)
 REPEAT
 PRINT ”If information not available, hit <return>“
 INPUT ”name: “,Phonebook.name
 INPUT ”phone number: “,Phonebook.phone
 INPUT ”street address: “,Phonebook.address.street
 INPUT ”city, state: “,Phonebook.address.cityst
 INPUT ”zip code: “,Phonebook.address.zip
 PUT #file, Phonebook
 PRINT ”If finished, type “”done“”.“
 INPUT ”Otherwise hit the <return> “,done$
 UNTIL done$=”done“
 RETURN

300 REPEAT
 INPUT ”What number record would you like?“,record
 SEEK #file,SIZE(Phonebook)*(record –1)
 GET #file,Phonebook
 PRINT ”name: “,Phonebook.name
 PRINT ”phone number: “,Phonebook.phone
 PRINT ”street address: “,Phonebook.address.street;
 PRINT ”city, state: “,Phonebook.address.cityst
 PRINT ”zip code: “,Phonebook.address.zip
 PRINT ”If finished, type “”done“”.“
 INPUT ”Otherwise hit the <return> “,done$
 UNTIL done$=”done“
 RETURN

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-12

Procedures can often be used by other procedures. BASIC allows
procedures to call each other, and a procedure can call itself. The RUN
statement calls an external procedure. BASIC looks first in the workspace,
then the data directory, and finally the execution directory. If it is found
outside the workspace, BASIC loads and runs it. The RUN statement
syntax is as follows:

RUN <proc name> [(<param>) {,<param>}]

The RUN statement can include parameters (a list of values) to pass to the
called procedure. The called procedure must have a PARAM statement
with variables of the same size and data type as the values passed.
Parameters may be any type of data structure.

The syntax for the PARAM statement is as follows:

PARAM <declaration sequence> : <type>

If a parameter is a constant or an expression, it is passed by value. This
means the called procedure can change it, but the changes are not returned
to the calling procedure

If a parameter is a variable, array, or data structure, it is passed by
reference. This means that any changes made to the value of the parameter
are returned to the calling procedure. BYTE data types may only be passed
by reference.

Commas (,) separate items in the declaration sequence. For example:

PARAM a,b: INTEGER

You can declare multiple data types on the same line by using semicolons
(;). For example:

PARAM a,b: INTEGER; c,d: REAL; listing(10): BYTE

Calling Procedures

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-13

The following example passes an array of integers by reference. Example
creates the array and passes it to prin. prin prints the array and passes it
back to example. example passes it to reverse which reverses the order of
the array. The reversed array is passed back to example. prin is run once
more to validate the reversal process.

PROCEDURE example

 DIM a,intlist(10): INTEGER

 FOR a = 1 TO 10

 intlist(a) = a

 NEXT a

 RUN prin(1,10,intlist)

 RUN reverse(1,10,intlist)

 RUN prin(1,10,intlist)

 END

PROCEDURE prin

 PARAM a,b,prin(10): INTEGER

 DIM c: INTEGER

 FOR c = a TO b

 PRINT prin(c);“ ”;

 NEXT c

 PRINT

 END

PROCEDURE reverse

 PARAM a,b,intlist(10):INTEGER

 DIM c, temp(10): INTEGER

 FOR c = b TO a STEP –1

 temp(b+1–c) = intlist(c)

 NEXT c

 intlist = temp

 END

The output should look like this:

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-14

Parameters may also be passed to the main procedure of a BASIC
program. A PARAM statement must also appear in the main procedure.

One major difference between passing parameters between procedures and
passing parameters to the main procedure is that parentheses are not
required to enclose the parameters passed to the main procedure. For
example, the following two statements pass parameters to a main
procedure from the shell.

$ filter –z=myfiles –p=~ –l=11

$ basic makdoc –z=bman 12

A parameter passed to a procedure is determined to be either a string or
numeric argument by the list of parameters given in the PARAM
statement. The parameters may be expressions that result in the correct
data type. For example, the following statement passes the numeric
argument 15 and the string argument thisthat:

$ filter 11+4 ““this” + “that””

Important: If a string parameter is in expression format (as above) or
could be construed as a numeric parameter (12 or 1.5), the parameter must
be within double quotes.

If you run a program from BASIC, you must use parentheses as if the
procedure was being called from another procedure. For example:

run filter(“–z=myfiles”, “–p=~”, “–l=11”)

Optional Parameters

A parameter passing error only occurs if a parameter is accessed that has
not been passed to a procedure. No error occurs, however, if too few or too
many parameters are passed as long as the missing parameters are not
accessed. The variables expecting parameters are not initialized if no
matching parameters are passed. Consequently, you should create some
sort of parameter handling subroutine for procedures receiving fewer
parameters than expected.

By adding a command line parameter to the Phonebook procedure, you can
create a help message for a first time user and an immediate access to
records. The key to this type of strategy is finding whether a parameter has
been passed, and if so, which one.

A second variable (str1) is declared to trap the parameter. It is initialized to
the string oops. If the parameter is not passed, the ON ERROR routine
passes control to the paramcheck routine. If a parameter is passed, str1 is
set to pstr1 and the paramcheck routine is run.

Command Line Parameters

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-15

In either case, paramcheck examines str1. By isolating the parameter
checking, the program keeps its integrity and allows for easy maintenance.
A question mark option (–?) is added to print a help message. The help
message explains how to use the procedure.

 PROCEDURE Phonebook

 PARAM pstr1:string

 TYPE rec=street:STRING[30];cityst:STRING[30];zip:STRING[9]

 TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec

 DIM Phonebook:ENTRY; flag:BOOLEAN; file,answer:INTEGER

 DIM str1:string

 record = 0

 flag := TRUE

 str1=“oops”

 ON ERROR GOTO 5

 str1=pstr1

 5 RUN paramcheck(str1,answer,record)

 ON ERROR

 ON ERROR GOTO 100

 CREATE #file, “phonebook”: UPDATE

 flag := FALSE

100 IF flag THEN OPEN #file, “phonebook”: UPDATE

 ENDIF

 ON ERROR

 REPEAT

 IF answer < 1 THEN

 PRINT “TYPE: ”“1”“ for add new entries”

 PRINT “ ”“2”“ for access previous entries”

 PRINT “ ”“3”“ for exit procedure”

 INPUT answer

 ENDIF

 ON answer GOSUB 200,300

 UNTIL answer = 3

 CLOSE #file

 END

200 SEEK #file, FILSIZ (#file)

 REPEAT

 PRINT “If information not available, hit <return>“

 INPUT “name: ”,Phonebook.name

 INPUT “phone number: ”,Phonebook.phone

 INPUT “street address: ”,Phonebook.address.street

 INPUT “city, state: ”,Phonebook.address.cityst

 INPUT “zip code: ”,Phonebook.address.zip

 PUT #file,Phonebook

 PRINT “If finished, type ”“done”“.”

 INPUT “Otherwise hit the <return> ”,done$

 UNTIL done$=“done”

 answer = 0

 RETURN

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-16

300 REPEAT

 IF record = 0 THEN

 INPUT “What number record would you like?”,record

 ENDIF

 SEEK #file,SIZE(Phonebook)*(record –1)

 GET #file,Phonebook

 PRINT “name: ”,Phonebook.name

 PRINT “phone number: ”,Phonebook.phone

 PRINT “street address: ”,Phonebook.address.street

 PRINT “city, state: ”,Phonebook.address.cityst

 PRINT “zip code: ”,Phonebook.address.zip

 PRINT “If finished, type ”“done”“.”

 INPUT “Otherwise hit the <return> ”,done$

 record = 0

 UNTIL done$ =“done”

 answer = 0

 RETURN

 PROCEDURE Paramcheck

 PARAM str1:STRING; answer,record:INTEGER

 IF str1 = “–?” THEN

 PRINT “Syntax: phonebook [<opt>]”

 PRINT “Function: This is a little black book for phone numbers.”

 PRINT “<opt> = –? prints this message.”

 PRINT “ –a add mode allows you to add phone numbers.”

 PRINT “ –r=<rec> specifies the phone number desired.”

 PRINT “ <rec> = the record number of the phone/address.”

 STOP

 ELSE

 IF str1 = “–a” THEN

 answer = 1

 ELSE

 IF LEFT$(str1,3)=“–r=” THEN

 record = VAL(MID$(str1,4,(LEN(str1)–3)))

 answer = 2

 ELSE

 answer = 0

 ENDIF

 ENDIF

 ENDIF

 END

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-17

BASIC has a powerful output editing capability for generating reports and
other applications where formatted output is required. The output editing
uses the PRINT..USING statement:

PRINT [<path#>] USING <str expr> , <output list>

The string expression is evaluated and used as a format specification. This
contains specific formatting directives for each item in the output list. The
<path#> is optional and can redirect the output to the
corresponding device.

Important: Blanks are not allowed in format strings!

The items in the output list can be constants, variables, or expressions of
any basic type. As each output item is processed, it is matched with a
specification in the format list. The type of each expression result must be
compatible with the corresponding format specification. If there are fewer
format specifications than items in the output list, the format specification
list is repeated again from its beginning as many times as necessary.

A format string has one or more format specifications separated by
commas. There are two kinds of specifications:

 those that control output editing of an item from the output list

 those that cause an output function by themselves (such as tabbing
and spacing)

There are six basic output editing directives. Each has a corresponding
one-letter identifier:

Identifier: Description:

R Real Format

E Exponential Format

I Integer Format

H Hexadecimal Format

S String Format

B Boolean Format

The letter is followed by a positive constant number called the field width .
This number indicates the exact number of columns in which to print the
output. It must allow for the data and “overhead” character positions such
as sign characters, decimal points, exponents, etc. The field width must be
between 1 and 255.

Formatted Output: The
PRINT .. USING Statement

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-18

Some formats have additional mandatory or optional parameters that
control subfields or select editing options. Real and exponential formats
use the fraction field to specify the number of digits to the right of the
decimal point. The fraction field is separated from the field width by a
decimal point. For example, a field width of 10 and a fraction field of 6 is
represented by “10.6.”

All formats can use the justification option. This option specifies whether
the output is to be centered, left, or right justified within the output field.
Fields are commonly right-justified in reports because it arranges them into
columns with decimal points aligned in the same position. The symbols
used in the justification specifications are:

< (left), > (right), ^ (center).

In the previous prin procedure, the following print statement was used:

PRINT prin(c);“”;

The extra space was added to separate the integers being printed. A similar
result can be obtained by using the PRINT..USING statement:

PRINT USING “I3>”,prin(c);

This formats each integer in a three space print field (I3). The integers are
right justified (>). You should use some caution when formatting. While a
leading sign is not printed (when positive), space for it must be allowed.
I3> only prints two digit integers.

A full explanation of the PRINT..USING statement and each of the format
types can be found in the reference section of this manual.

Program Construction:
Complex Data Types and Subroutines

Chapter 3

3-19

NOTES

Chapter

4

4-1

Program Optimization

When you run your procedures, Microware’s BASIC compiler makes
multiple passes through the code. The compiler produces a compressed and
optimized low-level I-code for execution. Compared to other BASIC
languages, program storage is greatly decreased and execution speed
is increased.

High-level language interpreters have a general reputation for slowness.
This is partly because traditional BASIC interpreters compile from text as
they run, and other BASIC interpreters must perform table-searching
during execution.

Microware BASIC, however, is kept at a powerful level so that there is
little performance difference between the execution of I-code and straight
machine-language instructions. Instead, a single, fast, I-code interpretation
often results in many MPU instruction cycles (such as execution of
floating-point arithmetic operations). Also, BASIC Icode instructions that
reference variable storage, statements, labels, etc., contain the actual
memory addresses, so no table searching is ever required. In addition,
BASIC fully exploits the power of the 68000’s instruction set which was
optimized for efficient execution of compiler-produced code.

BASIC I-code is interpreted. Therefore, a variety of entry time tests,
run-time tests, and development aids are available to help in program
development; aids not available on most compilers:

 The editor reports errors immediately when they are entered.

 The debugger allows debugging using the original program source
statements and names.

 The I-code interpreter performs run-time error checking of things such
as array bound errors, subroutine nesting, arithmetic errors, and other
errors that are not detected (and usually crash)
native-compiler-generated code.

General Execution
Performance of BASIC

Program Optimization
Chapter 4

4-2

BASIC includes several different numeric representations (REAL,
INTEGER, and BYTE) and performs automatic type conversions between
them. You can easily write expressions or loops that take at least ten times
longer to execute than is necessary. Some BASIC numeric operators (+, –,
*, /) and control structures (FOR..NEXT) include versions for both REAL
and INTEGER values. The INTEGER versions are much faster and may
have slightly different properties (for example, when you divide INTEGER
values, the remainder is discarded). Converting data types takes time, so
expressions whose operands and operators are of the same type are
more efficient.

INTEGER operations are faster because they generally have corresponding
68000 machine-language instructions. Overall program speed increases
and storage requirements decrease if INTEGERs are used whenever
possible. INTEGER arithmetic operations use the same symbols as REAL,
but BASIC automatically selects the INTEGER operations when working
with an integer-value result. Only if all operands of an expression are of
types BYTE or INTEGER will the result also be INTEGER.

Sometimes you can get similar or identical results in a number of different
ways at various execution speeds. For example, if the variable value is an
integer, value*2 is a fast integer operation. However, if the expression is
value*2., the value 2. is represented as a REAL number, and the
multiplication is a REAL multiplication which also requires that the
variable value must be transformed into a REAL value, and finally the
result of the expression must be transformed back to an INTEGER value if
you assign it to a variable of that type. Therefore, a single decimal point
slows down this operation by about ten times.

When Basic identifies a FOR..NEXT loop structure with an INTEGER
loop counter variable, it uses a special integer version of the FOR..NEXT
loop. This is much faster than the REAL-type version and is generally
preferable. Other kinds of loops also run faster if INTEGER type variables
are used for loop counters.

When writing program loops, remember that statements inside the loop
may be executed many times for each single execution outside the loop.
Thus, any value which can be computed before entering a loop increases
program speed.

Optimum Use of Numeric
Data Types

Looping Quickly

Program Optimization
Chapter 4

4-3

BASIC internally uses INTEGER numbers to index arrays and complex
data structures. If the program uses subscripts that are REAL type variables
or expressions, BASIC converts them to INTEGER before they can be
used. This takes additional time, so use INTEGER expressions for
subscripts whenever you can.

Important: The assignment statement (LET) can copy identically sized
data structures. LET is much faster than copying arrays or structures
element-by-element inside a loop.

The PACK command produces a compressed version of a BASIC
procedure. Depending on the number of comments, line numbers, etc.,
programs execute from 10% to 30% faster after being packed. Minimizing
use of line numbers will even speed up procedures that are unpacked.

Consider the expression:

x := x+SQRT(100)/2

It is exactly the same as the expression:

x := x+5

The sub-expression SQRT(100)/2 consists of constants only, so its result
does not vary regardless of the rest of the program. But every time the
program is run, the computer must evaluate it. This time can be significant,
especially if the statement is within a loop. You should calculate constant
expressions or sub-expressions while writing the program.

Reading or writing data a line or record at a time is much faster than one
character at a time. Also, the GET and PUT statements are much faster
than READ and WRITE statements when dealing with disk files. This is
because GET and PUT use the exact binary format used internally by
BASIC. READ, WRITE, PRINT, and INPUT must perform binary-to-ASCII or
ASCII-to-binary conversions.

Optimum Use of Arrays and
Data Structures

The PACK Command

Eliminating Constant
Expressions and
Sub-Expressions

Fast Input and Output
Functions

Program Optimization
Chapter 4

4-4

You can make a program faster by using efficient algorithms. You can use
algorithms found in most standard BASIC and PASCAL books with little
or no adaptation.

You should use a well-structured programming style that produces
efficient, reliable, readable, and maintainable software. BASIC generates
optimized code for the 68000 to execute. This code is currently the most
powerful 16-bit processor in existence. A computer can only execute what
it is told to execute. No language implementation can make up for an
inefficient program. An inefficient program is evidence of a lack of
understanding of the problem. The result is likely to be hard to understand
and hard to update if program specifications change. The identification of
efficient algorithms and their clear, structured expression is indicative of
professionalism in software design.

Professional Programming
Techniques

Section

2
BASIC Reference Guide

This section of the manual describes:

 BASIC’s four command modes:

Mode: Description:

SYSTEM Used for executing system commands.

EDIT Used for creating/editing procedures.

EXECUTION Used for running procedures.

DEBUG Used for testing procedures for errors.

Certain commands in each mode will change BASIC’s mode. The
following is a graphic representation of which commands accomplish this
and what mode they are carried out in.

BASIC Mode Changes

OS–9

BASIC

BASIC
AUTORUN

SYSTEM MODE

$
<eof>
BYE
DIR
LIST
MEM
RENAME
SAVE
DIGITS

EXECUTION MODE

END
<crtl E>
STOP
BYE

PAUSE
ERROR
<crtl C>

CHD
CHX
EDIT
KILL

LOAD
PACK

RUN

EDIT MODE

DEBUG MODE

$
Q
DEG/RAD
BREAK
LET
PRINT
LIST
STEP

TRON
TROFF

DIR
CONT
STATE

+
–
<cr>

q
escape

c
d
l
r
s

<space>

RUNB

Batch Processing Overview
Chapter 16

16-2

Syntax Notation Used in System Command Descriptions
Individual descriptions of the available commands in each mode follow. In
order to precisely describe their formats, the following syntax notation
is used.

Notation: Description:

[] Items in brackets are optional.

{ } Items in braces can be optionally repeated.

<procname> A procedure name

<pathlist> An OS-9 file name

<number> A decimal or hex number

 how to use the edit mode (the editor) to create or modify BASIC
procedures

 how to run a BASIC procedure

 symbolic debugging of programs

 data types and data structures

 expressions, operators and functions

 BASIC program statements and structure

 files and unified input/output

Chapter

5

5-1

System Mode

System mode includes commands to:

 save, load, and examine procedures
 interact with OS-9
 control the workspace environment

The following are the system commands:

$ BYE CHD/CHX DIGITS
DIR E/EDIT KILL LIST
LOAD MEM PACK RENAME

RUN SAVE

The BASIC command interpreter processes system commands. The
command interpreter always identifies itself with the B: prompt. You
automatically enter the command interpreter when you start BASIC and
when you exit any other mode. You can enter commands in either upper or
lower-case letters.

Commands such as DIR, MEM, $, and BYE do not operate on specific
procedures, but they may have optional or required parameters. Commands
such as SAVE, LOAD, PACK, KILL, and LIST can operate on a specific
procedure or on all procedures within the workspace.

If the command is used with a specific procedure name, the command is
applied to only that procedure. This example displays the procedure named
justin:

LIST justin

The asterisk is a special name that indicates all procedures in the
workspace. Therefore, if you enter the following command, all procedures
in the workspace are displayed:

LIST*

If you do not enter a name with the command, the current working
procedure is used. The current working procedure is the procedure
specified for the last command. The DIR command prints an asterisk
before the current working procedure’s name. This allows you to check
which procedure is current.

System Mode Commands

System Mode
Chapter 5

5-2

If you have not yet given a name in any command, BASIC automatically
uses the name Program. Some commands require a file name and (one or
more) procedure names. They usually require that a greater-than sign (>)
precede the file name so that it is not mistaken for a procedure name. If
you omit the file name, the name of the (first) procedure is used.

Important: In this manual, the phrase file name means an OS-9 pathlist
which describes either a file or device.

Here are some examples:

SAVE tom bill >myfile

SAVE* big_file

SAVE tic tac toe (same as SAVE tic,tac,toe >tic)

The RUN and EDIT commands use only one procedure name, or the
current working name if a name is omitted. These commands change
BASIC’s mode by exiting the command mode and entering another mode.

Command: Description:

RUN Enters execution mode to run a procedure.

EDIT Enters edit mode to create or change a procedure.

Important: You cannot directly enter debug mode from system mode.

System Mode
Chapter 5

5-3

Shell Command

Syntax

$ [<text>]

Function

This command calls the OS-9 shell command interpreter to process an OS9
command or to run another program. Running the shell command does not
disturb BASIC or its workspace.

If the dollar sign ($) is followed by text, the shell is called to process the
text as a single OS-9 command line. After the command is executed,
BASIC is immediately re-entered.

If no text is specified, BASIC is suspended, and the OS-9 shell is called to
process multiple command lines individually entered from the keyboard.
BASIC regains control when an end-of-file character (usually escape) is
entered. The contents of the BASIC workspace are not affected. This is a
convenient way to temporarily leave BASIC to manipulate files or perform
other housekeeping tasks.

This command is the gateway from BASIC to OS-9. It allows access to
any OS-9 command or to other programs. It also permits creation of
concurrent processes and other real-time functions.

Examples

Command: Description:

B: $copy file1 file2 Calls the OS-9 copy command

B: $r68 sourcefile& Calls the assembler as a background task

B: $basic fourier(20)& Starts another concurrent BASIC program

$

System Mode
Chapter 5

5-4

Exit Basic

Syntax

BYE

Function

BYE exits BASIC and returns to OS-9 or the program that called BASIC.
Any procedures in the workspace are lost if not previously saved. The
end-of-file character (usually the escape key) does the same thing.

Change Directories

Syntax

CHD <pathlist>

CHX <pathlist>

Function

CHD changes the current OS-9 user data directory to the specified pathlist
which must be a directory file. BASIC uses the data directory to LOAD or
SAVE procedures.

CHX changes the current OS-9 user execution directory to the specified
pathlist which must be a directory file. The execution directory is used to
PACK or auto-load packed modules.

Example

CHD /d1/joe/games

BYE (or <eof> character)

CHD/CHX

System Mode
Chapter 5

5-5

Formats Numerical Output (Real Numbers)

Syntax

DIGITS [<number>]

Function

DIGITS controls the number of digits that are printed when REAL numbers
are output.

DIGITS also controls the precision of transcendental calculation. The
minimum precision is 1 digit to the right of the decimal point, and the
maximum precision is 15. If the result is not within this range (1 to 15
precision), the result is brought into range without error. When no
<number> is specified, DIGITS displays the current precision.

Example

PROCEDURE Digitsdemo

 DIM x: REAL

 DIGITS 2

 INPUT x

 PRINT x

 END

RUN Digitsdemo

? 44.9234692

44.

Display Directory of Workspace

Syntax

DIR [<pathlist>]

Function

DIR displays the name, size, and variable storage requirement of each
procedure presently in the workspace. The current working procedure has
an asterisk before its name. All packed procedures have a dash before their
name (see PACK). The available free memory within the workspace is also
given. If a pathlist is specified, output is directed to that file or device.

DIGITS

DIR

System Mode
Chapter 5

5-6

A question mark next to a data storage size means the workspace does not
have enough free memory to run that procedure.

Important: Do not confuse this command with the OS-9 dir command.
They have completely different functions.

Enter Edit Mode

Syntax

EDIT [<procname>]

E [<procname>]

Function

EDIT (E) exits system mode and enters edit mode. If the specified
procedure does not exist, a new one is created. See the next chapter for a
complete description of how edit mode works.

Examples

E newprog

EDIT newprog

Delete Procedure from Workspace

Syntax

KILL [<procname> {,<procname>}]

KILL*

Function

KILL deletes the procedure(s) specified by <procname>. KILL* clears the
entire workspace. This process may take some time if there are many
procedures in the workspace.

Examples

KILL formulas

KILL prog1, prog2, prog7

EDIT/E

KILL/KILL*

System Mode
Chapter 5

5-7

Display Listing of Procedure

Syntax

LIST [<procname> {,<procname>}] [> <pathlist>]

LIST* [<pathlist>]

Function

LIST prints a formatted listing of one or more procedures. LIST* prints a
formatted listing of all procedures in the workspace. The listing includes
the relative I-code storage addresses in hexadecimal format in the first
column. The second column is reserved for program line numbers (if line
numbers are used).

If a pathlist is given, the listing is output to that file or device. This option
is commonly used to print hard-copy listings of programs.

LIST prints on the OS-9 standard error path (#2) if no pathlist is given.

Important: If an asterisk (*) is used, the file name (<pathlist>) follows
immediately without a greater-than sign (>) before it.

Examples

LIST* /p

LIST prog2,prog3 >/p

LIST prog5 >temp

LIST/LIST*

System Mode
Chapter 5

5-8

Load Procedure into Workspace

Syntax

LOAD <pathlist>

Function

LOAD loads all procedures from the specified file into the workspace. As
procedures are loaded, their names are displayed. If any of the procedures
being loaded have the same name as a procedure already in the workspace,
the existing procedures are erased and replaced with the procedure
being loaded.

If the workspace fills up before the last procedure in the file is loaded, an
error (#32) is given. In this case, not all procedures may have been loaded,
and the one being loaded when the workspace became full may not be
completely loaded. You should KILL the last procedure, use the MEM
command to get more memory or KILL unnecessary procedure(s) to free
up space, and then LOAD the file again.

Example

LOAD quadratics

Display or Request Workspace Memory

Syntax

MEM [<number>]

Function

MEM used without a number displays the present total workspace size in
(decimal) bytes. If a number is given, BASIC asks OS-9 to expand or
contract the workspace to that size. A hex value can be used if preceded by
a dollar sign. If MEM responds with What?, you either asked for more
memory than is available, tried to give back too much memory (there has
to be enough to store all procedures in the workspace), or gave an
invalid number.

LOAD

MEM

System Mode
Chapter 5

5-9

Example

MEM 18000

Pack Procedure

Syntax

PACK [<procname> {,<procname>}] [> <pathlist>]

PACK* [<pathlist>]

Function

PACK causes an extra compiler pass on the specified procedure(s). This
removes names, line numbers, non-executable statements, etc. The result is
a smaller, faster procedure(s) that cannot be edited or debugged but can be
executed by BASIC or by the BASIC run-time-only program called RunB.

If a pathlist is not specified, the name of the first procedure in the list is
used as the file name. The packed file is stored in your execution directory.

The procedure is written to the file/device specified in OS-9 memory
module format suitable for loading in ROM or RAM outside the
workspace. BASIC automatically loads the packed procedure when you try
to run it later. Here is an example sequence that demonstrates packing a
procedure:

PACK sort Packs procedure sort and creates a file

KILL sort Kills procedure inside the workspace

RUN sort Run (sort is loaded outside of the workspace)

KILL sort Done; delete sort from outside memory

The last step does not have to be done immediately if you will be using the
procedure again later, but you should kill it when you are done so its
memory can be used for other purposes.

Important: The packed file cannot be loaded into the workspace later on.
Always perform a regular SAVE before packing a procedure.

Example

PACK proc1,proc2 >packed.programs

PACK/PACK*

System Mode
Chapter 5

5-10

Rename a Procedure

Syntax

RENAME <procname>,<new procname>

Function

RENAME changes the name of a procedure. It can be used to allow two
copies of the same procedure in the workspace under different names.

Example

RENAME thisproc thatproc

Execute a Procedure

Syntax

RUN [<procname> [(<expr> , {<expr>})]]

Function

RUN executes the specified procedure. BASIC leaves system mode and
enters execution mode.

You can use a parameter list to pass expected parameters to the procedure.
This is generally used in the same way that a RUN statement inside a
procedure calls another procedure. The only restriction is that all
parameters must be constants or expressions without variables. See the
PARAM statement description.

The procedure called can be normal or packed. If the procedure is not
found inside BASIC’s workspace, BASIC calls OS-9 to attempt to LINK
to an external (outside the workspace) module. If this fails, BASIC
attempts to LOAD the procedure from a file of the same name.

Examples

RUN getdata

RUN invert(“the string to be inverted”)

RUN power(12,354.06)

RUN power($32, sin(pi/2))

RENAME

RUN

System Mode
Chapter 5

5-11

Write Procedure to an Output File

Syntax

SAVE [<procname> { <procname>} [> <pathlist>]]

SAVE* [<pathlist>]

Function

SAVE writes the procedure(s) (or all procedures with SAVE*) to an output
file or device in source format. SAVE is similar to the LIST command
except the output is not formatted and I-code addresses are not included. If
a pathlist is not specified, it defaults to the name of the first
procedure listed.

If a file of the same name already exists, SAVE prompts with
the following:

rewrite?

You may answer Y for yes which causes the existing file to be rewritten
with the new procedure(s); or N to cancel the SAVE command.

Important: If an asterisk (*) is used, the file name (<pathlist>) follows
immediately without a greater-than sign (>) before it.

Examples

SAVE proc2 proc3 proc4 >monday.work

SAVE* newprogram

SAVE

SAVE >testprogram

SAVE/SAVE*

Chapter

6

6-1

Edit Mode

You use the edit mode (the editor) to create or modify BASIC procedures.
To enter edit mode from system mode, use the EDIT (or E) command.
When you enter edit mode, the prompt E: is displayed. If you have used a
text editor before, you will find the BASIC editor similar to many others
except for these two differences:

 The editor is both string and line number oriented. Using line numbers
is optional, and you can correct text without re-typing the entire line.

 The editor is interfaced to the BASIC compiler and decompiler. This
lets BASIC perform continuous syntax error checking and allows
programs to be stored in memory in a more compact, compiled form.

The editor includes the following commands. Each command is described
in detail later in this chapter.

Command: Description:

<cr> Moves the edit pointer forward one line.

+[<number>] Moves the edit pointer forward.

–[<number>] Moves the edit pointer backward.

<space> <text> Inserts an unnumbered line.

<space> <line#> <text> Inserts or replaces a numbered line.

<line#> <cr> Finds a numbered line.

c Changes a string.

d Deletes a line.

l Lists line(s).

q Quits editing.

r Renumbers line.

s Searches for string.

<esc> Quits editing.

Edit Mode Commands

Edit Mode
Chapter 6

6-2

BASIC programs are always stored in memory in a compiled form called
I-code (short for Intermediate Code). I-code is a complex binary coding
system for programs that lies between your original source program and
the computer’s native machine language. I-code is relatively compact, can
be executed rapidly, and most importantly, can be reconstructed almost
back to the original source program. The editor is closely connected to the
compiler and decompiler systems within BASIC that translate source code
to I-Code and vice-versa.

When you enter or change a program line and press the return key, the
compiler instantly translates this text to the internal I-code form. When
BASIC displays program lines, it uses the decompiler to translate the
I-code back to the original source format. These processes are completely
automatic and do not require any special action on your part.

This technique has several advantages:

 It allows the text editor to report many (syntax) errors immediately so
you can correct them instantly.

 The I-code representation of a program is more compact (by about 30%)
than its original form. This allows you to have larger programs in any
given amount of available memory.

When BASIC lists programs, they may appear slightly different than the
way they were originally typed in, but they are always functionally
identical to the original form. A different appearance can happen if the
original program had extraneous spaces between keywords, unnecessary
parentheses in expressions, etc. BASIC keywords are always automatically
capitalized.

When you finish editing the procedure, use the q (for quit) command to
exit edit mode and return to system mode. When you enter the q command,
the compiler passes over the entire procedure again. At this time, syntax
that extends over multiple lines is checked and errors reported. Examples
of these errors are:

 GOTO or GOSUB to a non-existent line
 missing variable or array declarations
 improperly constructed loops

These errors are reported using an error code and the hexadecimal I-code
address of the error. For example:

01FC ERR #000:043

How the Editor Works

Edit Mode
Chapter 6

6-3

This message means that error number 43 was detected in the line that
included I-code address 01FC (hexadecimal). The LIST command gives
the I-code addresses so you can locate lines with errors reported during the
compiler’s second pass.

The editor can work on programs with or without line numbers. If you use
line numbers, they must be positive whole numbers in the range of
1 to 32767.

If you have used another version of the BASIC language, this is the kind of
editing you probably used. However, well-structured programs seldom
really need line numbers. Do not use line numbers unless they are
necessary. By not using line number, your programs will be shorter, faster,
and easier to read.

The line-number oriented commands are:

Command: Description:

<space> <line#> <text> Inserts or replaces a numbered line.

<line#> <cr> Finds a numbered line.

r Renumbers a line.

r* Renumbers all lines.

To enter or replace a numbered line, enter a <space> , followed by the line
number and statement. You can enter numbered lines in any order, but they
are stored in ascending sequence. To move the edit pointer to a numbered
line, type the line number followed by a carriage return. The editor moves
to that line (or the line with the next higher number if the specified number
is not found) and displays it. You can delete the line with the d command.

The r renumber command uniformly resequences all numbered lines and
lines that refer to numbered lines. The syntax for this command is
as follows:

r [<beg line #> [, <incr>]] [CR]

r*[<beg line #> [, <incr>]] [CR]

The first format renumbers the program starting at the current line and
moving forward to the end of the procedure. Lines are renumbered using
<beg line#> as the initial line number. <incr> is added to the previous line
number for the next line’s number. The following example gives the first
line number 200, the second 205, etc. If <beg line#> and/or <incr> are not
specified, the values 100 and 10, respectively, are assumed.

r 200,5

The second form of the command renumbers all lines in the procedure.

Line-Number Oriented
Editing

Edit Mode
Chapter 6

6-4

Most editor commands are string-oriented, which means that you can enter
or change whole or partial lines without using line numbers.
String-oriented editing is generally fast and convenient.

Because line numbers are not used, the editor maintains an edit pointer to
indicate which line is the present working location within the procedure.
String-oriented commands work relative to this point.

The editor shows you the location of the edit pointer by displaying an
asterisk (*) at the left side of the program line where the edit pointer is
presently located.

Moving the Edit Pointer

Use the addition (+) and subtraction (–) commands to reposition the
edit pointer:

Command: Description:

– <number> Moves backward <number> lines.

–* Moves to the beginning of the procedure.

+ Moves forward one line.

+ <number> Moves forward <number> lines.

+* Moves to the end of procedure.

The <number> indicates how many lines to move. Backward means
towards the first line of the procedure. If the number is omitted, one is used
(this is true of most edit commands).

A line consisting of a carriage return only moves the pointer forward one
line, which makes it easy to step through a program one line at a time.
Therefore, the following commands all do the same thing:

[CR]

+ [CR]

+1 [CR]

Inserting Lines

The insert line function consists of a space followed by a BASIC statement
line. The statement is inserted just ahead of the edit pointer position. The
space itself is not inserted.

String-Oriented Editing

Edit Mode
Chapter 6

6-5

Deleting Lines

The d command deletes one or more lines:

d [<number>] [CR]

d*

The first form deletes the specified number of lines starting at the edit
pointer’s current position. If the number is negative, that many lines before
the current line are deleted. If a line number is omitted, only the current
line is deleted.

The second form deletes all lines in the procedure. The editor also accepts
two variations of this command:

Command: Description:

d+* Deletes all lines to the end of the procedure.

d–* Deletes all lines to the beginning of the procedure.

Important: Be careful when using the d* command. You may delete
lines unintentionally.

Listing Lines

The l command displays one or more lines:

l [<number>] [CR]

l*

The first form displays the specified number of lines starting at the edit
pointer’s current position. If the number is negative, previous lines
are listed.

The second form displays the entire procedure. Neither form changes the
edit pointer’s position. The line that is the current position of the edit
pointer is displayed with a leading asterisk.

Search: Finding STRINGS

A string is a sequence of one or more characters. This can include letters,
numbers, or punctuation, in any combination. Strings allow you to change
or locate a portion of a statement without having to type the
entire statement.

Edit Mode
Chapter 6

6-6

In the editor, strings must be surrounded by delimiters. Delimiters are two
matching characters located at the beginning and the end of a string. The
editor uses delimiters to locate the beginning and the end of strings. The
characters used for delimiters are not considered part of the string.
Therefore, the character you use for a delimiter must not appear within
the string.

Do not confuse the strings used by the editor with BASIC’s data type
which is also called STRING –. Although they have the same name, they
are quite different.

You can use the s command to locate the next occurrence or all
occurrences of a string. The format for this command is as follows:

s <delim> <match str> [<delim>] [CR]

s* <delim> <match str> [<delim>] [CR]

The first format searches for the <match str> starting with the current line.
If any line at or following the edit pointer includes a sequence of characters
that match the search string, the edit pointer is moved to that line and the
line is displayed. If the string cannot be located, the following message is
displayed and the edit pointer remains at its original position:

CAN’T FIND: “<match str>”

The s* variation searches for all occurrences of the string in the procedure
starting at the present edit pointer and displays all lines in which it is
found. The edit pointer is moved to the last line where the string occurred.

Here are some examples:

Command: Description:

E:s/counter/ Looks for the string: counter

E:s.1/2. Looks for the string: 1/2

E:s?three blind mice? Looks for the string: three blind mice

Change: STRING Substitution

The change string function can eliminate a tremendous amount of typing.
It allows strings within lines to be located, removed, and replaced by
another string. This command is commonly used for fixing error lines
without having to retype the entire line or changing a variable name
throughout a program. The format for the c command is as follows:

c <delim> <match str> <delim> <repl str> [<delim>] [CR]

c* <delim> <match str> <delim> <repl str> [<delim>] [CR]

Edit Mode
Chapter 6

6-7

In the first form, the editor looks for the first occurrence of the match
string starting at the present edit pointer position. If found, the match string
is removed from the line and the replacement string is inserted in its place.

The second form works the same way, except it changes all occurrences of
the match string in the procedure starting at the edit pointer’s
current position.

The c* command stops when it finds or creates a line with an error.

Important: Sometimes you can inadvertently change a line you did not
intend to change because the match string is imbedded in a longer string.
For example, if you attempt to change no to yes and the word normal
occurs before the no you are looking for, normal will change to yesrmal.

Examples

c/xval/yval/

c*,GOSUB 5300,GOSUB 5500

Chapter

7

7-1

Execution Mode

To run a BASIC procedure, enter:

RUN <procname>

If the procedure you want to run was the last procedure edited, listed,
saved, etc., you can execute it without specifying a procedure name (the
asterisk (*) shown in the DIR command identifies this procedure).

If the procedure expects parameters, you can enter them on the same
command line. They must all be constant numbers or strings, as
appropriate, and must be given in the correct order. For example:

RUN add(4,7)

This calls a program (such as the one that follows) and passes it the
specified parameters.

PROCEDURE add

PARAMETER a,b a,b receive the values 4,7

PRINT a+b

END

The ability to pass parameters to a program allows you to specifically
initialize program variables. Sometimes certain procedures are parts of a
larger software system and are designed to be called from other
procedures. You can use this feature to individually test such procedures by
passing them test values as parameters.

When you execute the RUN statement, BASIC enters execution mode. The
procedure runs until one of the following events occur:

 an END or STOP statement is executed
 you type [Ctrl-E]

 a run-time error occurs
 you type [Ctrl-C] (keyboard interrupt)

Important: In the first two cases, you return to system mode. In the last
two cases, you enter debug mode.

Running Programs

Execution Mode
Chapter 7

7-2

The RUN statement is simple and normally you do not need to know what
is happening inside BASIC when you use it. The technical description of
execution mode that follows is given for the benefit of advanced
BASIC programmers.

Execution mode is BASIC’s state when you run any procedure. It involves
executing the Icode of one or more procedures inside or outside the
workspace. Many procedures can be in use because they can call each
other (or themselves) and nest exactly like subroutines.

You can enter execution mode in two ways:

 the RUN system command
 BASIC’s auto-run feature

The auto-run feature allows BASIC to get the name of a file to load and
run from the same command line used to call BASIC. The file can be
either a SAVED file in the data directory or a PACKED file in the
execution directory. The file may contain several procedures; the one
executed is the one with the same name as the file. Parameters may be
passed following the specified pathname. When using the auto-run feature,
upon finishing execution, control returns to BASIC’s command mode. For
example, the following OS-9 command lines use this feature:

$ BASIC printreport “Past Due Accounts”

$ BASIC evaluate COS(7.8814)/12.075,–22.5,129.055

Execution Mode: Technically
Speaking

Chapter

8

8-1

Debug Mode

Symbolic debugging is the testing and manipulation of programs using the
actual names and program statements used in the program. This is
accomplished by BASIC’s powerful symbolic debugging commands:

 $
 BREAK
 CONT
 DEG/RAD
 DIR
 LET
 LIST
 PRINT
 Q
 STATE

This chapter discusses how the debug mode can let you watch your
program run in slow motion. This allows you to observe each statement as
it is executed. This chapter also includes how to use the debug mode as
a calculator.

Debug mode is entered from execution mode in one of three ways:

 when an error occurs during execution of a procedure (that is not
intercepted by an ON ERROR GOTO statement within the program)

 when a procedure executes a PAUSE statement

 when a keyboard interrupt ([Ctrl-C]) occurs

When any of the above happen, debug mode displays the suspended
procedure name like this:

BREAK: PROCEDURE test5

D:

Important: Debug mode displays a D: prompt when it is waiting for a
command. You can then use any debug mode command to examine or
change variables, turn trace mode on/off, etc. Depending on which
commands are used, execution of the program can be terminated, resumed,
or executed one source line at a time.

Overview of Debug Mode

Debug Mode
Chapter 8

8-2

Shell Command

Syntax

$ <text>

Function

$ calls OS-9’s shell command interpreter to run a program or OS-9
command. This command executes the same as the system mode
$ command.

Set Breakpoint

Syntax

BREAK <proc name>

Function

BREAK sets a breakpoint at the specified procedure. This command is used
when procedures call each other and provides a way to re-enter debug
mode when returning to a specific procedure.

To illustrate how BREAK works, suppose three procedures are in your
workspace: Proc1, Proc2, and Proc3. Assume that Proc1 calls Proc2, and
Proc2 calls Proc3. While Proc3 is executing, you type [Ctrl-C] to enter
debug mode. To use the BREAK command, type:

D: BREAK proc1

ok

D:

Important: BREAK responds with ok if the procedure was found on the
current RUN stack. You can use the STATE command to verify that the
three procedures are nested as expected.

You can resume execution of Proc3 by typing cont. After Proc3 terminates,
control passes back to Proc2, which eventually returns to Proc1. As soon as
this happens, the breakpoint you set is encountered, Proc1 is suspended,
and debug mode is re-entered.

$

BREAK

Debug Mode
Chapter 8

8-3

There are three characteristics of BREAK you should note:

 The breakpoint is removed as soon as it occurs.

 You can use one breakpoint for each active procedure.

 You cannot put a breakpoint on a procedure unless it has been called but
not yet re-entered. Therefore, BREAK cannot be used on procedures
that have not yet run.

Continue Execution

Syntax

CONT

Function

CONT continues program execution at the next statement. It may resume
programs suspended by [Ctrl-C] , PAUSE statements, BREAK command
breakpoints, or after non-fatal run-time errors.

Select Degree or Radian Units for Computation

Syntax

DEG

RAD

Function

The DEG and RAD commands set a state flag. The system uses this state
flag to determine whether degrees or radians (respectively) should be used
as the angle unit for trigonometric functions. These commands only affect
the procedure currently being debugged or run.

CONT

DEG/RAD

Debug Mode
Chapter 8

8-4

Display Workspace Directory

Syntax

DIR [<path>]

Function

DIR displays the workspace procedure directory in the same way as the
system mode DIR command.

Assignment Statement

Syntax

LET <var> := <expr>

Function

The debug mode LET command is essentially the same as the BASIC LET
program statement. It allows the value of a procedure variable to be set to a
new value using the result of the evaluated expression. The variable names
used in this command must be the same as in the original source program;
otherwise, an error is generated. LET does not work on user-defined data
structures.

List Current Procedure

Syntax

LIST

Function

LIST displays a formatted source listing of the suspended procedure with
Icode addresses. An asterisk is printed to the left of the statement where the
procedure is suspended. You can only list the current procedure.

DIR

LET

LIST

Debug Mode
Chapter 8

8-5

Print Present Value of Variables

Syntax

PRINT [#<expr>,] [USING <expr>,] <expr list>

Function

PRINT can be used to examine the present value of variables in the
suspended program. All variable names must be the same as in the original
program. You cannot use new variable names. User-defined data structures
cannot be printed.

Quit Debug Mode

Syntax

Q

Function

Q terminates execution of all procedures and exits debug mode by returning
to system mode. Any open paths are closed at this point.

List Calling Order of Procedures

Syntax

STATE

Function

STATE lists the calling (nesting) order of all active procedures. The
highest-level procedure is always shown at the bottom of the calling list,
and the lowest-level procedure is always listed first.

Example

D:state
PROCEDURE DELTA
CALLED BY BETA
CALLED BY ALPHA
CALLED BY PROGRAM

PRINT

Q

STATE

Debug Mode
Chapter 8

8-6

Single (or Specified) Line Execution

Syntax

STEP [<number>] or [CR]

Function

STEP executes the suspended procedure one or more source statements at
a time.

For example, step 5 executes the equivalent of the next five source
statements. A debug command line which is just a carriage return is
considered the same as step 1. STEP is most commonly used with the trace
mode on. This allows you to see the original source lines as they
are executed.

Important: Because compiled I-code contains actual statement memory
addresses, the top or bottom statements of loop structures are usually
executed just once. For example, in FOR...NEXT loops the FOR statement
is executed once, so the statement that appears to be the top of the loop is
actually the one following the FOR statement.

Turn On/Off Trace Mode

Syntax

TRON

TROFF

Function

These commands turn the suspended procedure’s trace mode on and off. In
trace mode, the compiled code of each equivalent statement line is
reconstructed to source statements and displayed before the statement is
executed. If the statement causes the evaluation of one or more
expressions, an equal sign and the expression result(s) are displayed on the
following line(s).

Trace mode is local to a procedure. If the suspended procedure calls
another, no tracing occurs until control returns to the calling procedure
(unless the called procedure has trace mode on).

STEP

TRON/TROFF

Debug Mode
Chapter 8

8-7

If your program does not do what you expect, it is sure to show one of
two symptoms:

 premature termination due to an error
 incorrect results

The first case automatically sends you into debug mode. In the second
case, you have to force the program into debug mode either by pressing
[Ctrl-C] (assuming you have time to do so), or by using edit mode to put
one or more PAUSE statements in the program. Once you are in debug
mode, you can debug your program.

Usually, after an error stops the program you should use the PRINT
command to look at the present values of crucial program variables. Bad
values are usually quite apparent. Perhaps you forgot to initialize a variable
or forgot to increment a loop counter.

If examining variables is not fruitful, you should place a PAUSE statement
at the beginning of the suspected procedure or at a place within the code
where you think things begin to go wrong. Then, rerun the program. When
the program hits the PAUSE statement, it enters the debug mode.

Next, turn the trace mode on and watch your program run. Type:

D: TRON

Then, press the carriage return key once for every statement you want to
trace. You will see the original source statement, and if expressions are
evaluated by the statement, debug mode prints an equal sign and the result
of the expression.

Notice that some statements such as FOR and PRINT may cause more than
one expression to be evaluated.

Using this technique, you can watch your program run one step at a time
until you see where it goes wrong.

If in the process of tracing, you encounter a loop that works, but executes
200 statements repetitively, you do not have to trace line by line. In this
case, you may turn the trace off and use the STEP command to quickly run
through the loop. Then, turn trace mode back on, and resume single-step
debugging. The command sequence for this is:

D: TROFF

D: STEP 200

D: TRON

Debugging Techniques

Debug Mode
Chapter 8

8-8

Important: Trace mode is local to one procedure only. If the procedure
being tested returns to another procedure you need to use the BREAK
command or put a PAUSE statement in the procedure to enter debug mode.
If you call another procedure from the procedure being debugged, tracing
stops when it is called until it returns. If you also want to trace the called
procedure, it needs its own PAUSE statement.

The simple program listed below turns debug mode into a powerful
calculator. Calculator declares 26 working variables, then goes into debug
mode. This allows you to use interactive PRINT and LET statements.

PROCEDURE Calculator

DIM a,b,c,d,e,f,g,h,i,j,k,l,m

DIM n,o,p,q,r,s,t,u,v,w,x,y,z

PAUSE

END

Recall that while in debug mode, you cannot create new variables.
Therefore, DIM pre-defines 26 working variables for you. You can use
more or fewer variables. PAUSE causes you to enter debug mode. The
following is a sample session:

B: run calculator

BREAK: PROCEDURE Calculator

D:let x:=12.5

D:print sin(pi/2)

1.

D:let y:=exp(4+0.5)

D:print x,y

12.5 90.0171313

D:Q

B:

Important: The debug mode PRINT command can use PRINT USING to
produce formatted output (including hexadecimal).

Debug Mode as a Desk
Calculator

Chapter

9

9-1

Data Types and Data Structures

Computer programs process data. The computer’s performance, and even
sometimes whether or not a computer can handle a particular problem,
depends on how the software stores data in memory and operates on it.
BASIC offers many possibilities for organizing and manipulating data.

There are many types of data. You can have numerical data, textual data,
etc., but you can seldom mix data types. Not only do they have different
storage size requirements, but they are logically incompatible. For
example, it would be meaningless to multiply letters and punctuation.

Even within the same general kind of data, there are different ways to
represent data. You can represent numbers in three different ways. Each
way has its own advantages and disadvantages. You should use the way
that fits your needs for each procedure.

To help you select the most appropriate way to store data variables, BASIC
provides five different basic data types. BASIC also lets you create new
customized data types based on combinations of the five basic types.

A data structure refers to storage for more than one data item under a
single name. Data structures can be composed of various data types. Data
structures are often the most practical and convenient way to organize large
amounts of similar data.

The simplest kind of data structure is the array, which is a table of values.
The table has a single name, and the storage space for each individual
value is numbered. Arrays are created by DIM statements.

For example, to create an array having five storage spaces called AGES,
use the statement:

DIM AGES(5):INTEGER

(5) tells BASIC how many spaces to reserve. :INTEGER indicates the
array’s data type. To assign a value of 22 to the third storage space in the
array, use the statement:

LET AGES(3):=22

Data Types

Data Structures

Data Types and Data Structures
Chapter 9

9-2

BASIC includes five basic data types:

Type: Allowable values: Memory requirement:

BYTE Whole Numbers 0 to 255 One byte

INTEGER Whole Numbers –2,147,483,648 to 2,147,483,647 Four bytes

REAL Floating Point (+/–) 2.2*10^–308 to 1.8*10^308 Eight bytes

STRING Letters, digits, punctuation One byte/character

BOOLEAN True or False One byte

REAL numbers appear to be the most versatile data type. They have the
greatest range and are floating-point. Arithmetic operations involving
them, however, are relatively slow (by a factor directly related to the
memory required) when compared to the INTEGER or BYTE types.

Therefore, using INTEGER values for loop counters, indexing arrays, etc.
can significantly speed up your programs. While the BYTE type is not
appreciably faster than INTEGER, it conserves memory space in some
cases and serves as a building block for complex data types in other cases.

If you neglect to specify the type of a variable, BASIC automatically
assumes the REAL data type.

Arrays of any of these data types can be created using one, two, or
three dimensions.

BYTE variables hold integer values in the range 0 through 255 which are
stored as a single byte. BYTE values are always converted to INTEGER
values and/or REAL values for computation, thus they have no speed
advantage over other numeric types. However, BYTE variables require
only a quarter of the storage used by integers, and an eighth of that used
by reals.

Attempting to store an integer value outside the BYTE range to a BYTE
variable results in the storage of the least-significant 8-bits (the value
modulo 256) without error.

The Five Basic Data Types

The BYTE Data Type

Data Types and Data Structures
Chapter 9

9-3

INTEGER variables consist of four bytes of storage. These bytes hold a
numeric value in the range –2,147,483,648 through 2,147,483,647 as
signed 32-bit data. Decimal points are not allowed. INTEGER constants
may also be represented as hexadecimal values in the range $00000000
through $FFFFFFFF to facilitate address calculations. INTEGER values
are printed without a decimal point. INTEGER arithmetic is faster and
requires less storage than REAL values.

Arithmetic which results in values outside the INTEGER range does not
cause run-time errors but instead “wraps around” modulo 4,294,967,296;
(for example, 2,147,483,647 + 1 yields 2,147,483,648). Division of an
integer by another integer yields an integer result, and any remainder is
discarded. Values outside the INTEGER range are converted to REAL
values. Consequently, they return an input error when passed to a
procedure as integers. Additionally, certain functions (LAND, LNOT,
LOR, LXOR) use integer values, but produce results on a non-numeric
bit-by-bit basis.

The REAL data type is the default type for undeclared variables. However,
a variable may be explicitly typed REAL (for example, twopi:REAL) to
improve a program’s internal documentation. REAL-type values are
always printed with a decimal point, and only those constants which
include a decimal point are actually stored as REAL values.

REAL numbers are stored in eight consecutive memory bytes. The
representation is based on the double-precision format of IEEE Draft
Standard 754. Bit 7 of the first byte is the sign of the mantissa. Bits 0-6 of
the first byte and bits 4-7 of the second byte form the exponent. The
exponent is biased by 1024. The remaining 52 bits comprise the mantissa.

The mantissa has an implied leading one bit.

The INTEGER Data Type

The REAL Data Type

Data Types and Data Structures
Chapter 9

9-4

 +0 +1 +2 +3 +4 +5 +6 +7BYTE:

<exponent> <mantissa>

Mantissa Sign

s

The exponent covers the range 2.2*10^-308 (2^-1022 through 1.8*10^308
(2^1024)) as powers of 2. Operations which result in values out of the
representation range cause overflow or underflow errors (which may be
handled automatically by the ON ERROR command).

The mantissa covers the range from 1.0 through 1.99999999999999 in
steps of 2^-31. This means that REAL numbers can represent values on the
number line about .0000000005 apart. Operations which cause results
between the representable points are rounded to the nearest
representable number.

Floating point arithmetic is inherently inexact, thus a sequence of
operations can produce a cumulative error. Proper rounding (as
implemented in BASIC) reduces this effect but cannot eliminate it.
Programmers using comparisons on REAL quantities should use caution
with strict comparisons (= or <>), because the exact desired value may not
occur during program execution.

A STRING is a variable length (0 or more) sequence of characters. A
STRING of zero characters is called an empty STRING. A variable may be
defined as a STRING either explicitly (DIM title:STRING) or implicitly
by appending a dollar-sign character to the variable name (title$:= “My
First Program.”).

The default maximum length allocated to each string is 32 characters, but
each string may be dimensioned less (DIM A:STRING [4]) for memory
savings or more (DIM long:STRING [2880]) to allow long strings.

Important: Strings are inherently variable-length entities, and
dimensioning the storage for a string only defines the maximum-length
string which can be stored there.

Internal Representation of
REAL Numbers

The STRING Data Type

Data Types and Data Structures
Chapter 9

9-5

When a STRING value is assigned to a STRING variable, the bytes
composing the string are copied into the variable storage byte-by-byte. The
beginning of a string is always character number one, and this is not
affected by the BASE0 or BASE1 statements. Operations which result in
strings too long to fit in the dimensioned storage truncate the string on the
right and no error is generated.

Normally the internal representation of the string is hidden. A string is
stored in a fixed-size storage area and is represented by a sequence of bytes
terminated by the value zero or by the maximum length allocated to the
STRING variable. Any remaining unused storage after the zero byte allows
the stored string to expand and contract during execution.

The example below shows the internal storage of a variable dimensioned
as STRING[6] and assigned a value of SAM. Notice the byte at +3
contains the zero string terminator, and the two following bytes are
not used.

+0 +1 +2 +3 +4 +5BYTE:

S A M 00

If the value ROBERT is assigned to the variable, the zero byte terminator
is not needed because the STRING fills the storage:

+0 +1 +2 +3 +4 +5BYTE:

R O B E R T

A BOOLEAN data type can have only two values: TRUE or FALSE. They
are stored as single byte values, but they may not be used for numeric
computation. A variable may be typed BOOLEAN (DIM
done_flag:BOOLEAN). BOOLEAN values print out as the character
strings: “TRUE” and “FALSE.”

BOOLEAN values result from comparing two compatible types.
BOOLEAN values are appropriate for logical flags and expressions. For
example, result:=a AND b AND c.

The BOOLEAN Data Type

Data Types and Data Structures
Chapter 9

9-6

Do not confuse BOOLEAN operations AND, OR, XOR, and NOT with
the logical functions LAND, LOR, LXOR, and LNOT. Logical functions
use integer values to produce results on a bit-by-bit basis.

Attempting to store a non-BOOLEAN value in a BOOLEAN variable (or
the reverse) causes a binding error or an error on the second compiler pass
when leaving edit mode.

Expressions that mix numeric data types (BYTE, INTEGER, or REAL) are
automatically and temporarily converted to the largest type necessary to
retain accuracy. In addition, certain BASIC functions also perform
automatic type conversions as necessary. Therefore, numeric quantities of
mixed types may be used in most cases.

Type-mismatch errors happen when an expression includes types that
cannot legally be mixed. These errors are reported by the second compiler
pass which automatically occurs when you leave edit mode. Type
conversions can take time. Therefore, you should use expressions
containing all values of a single type wherever possible.

Constants are frequently used in program statements and in expressions to
assign values to variables. BASIC has rules that allow you to specify
constants that correspond to the five basic data types.

Numeric constants can be either REAL or INTEGER. If a number constant
includes a decimal point or uses the “E format” exponential form, BASIC
stores the number in REAL format. This is true even if the value could be
represented by an INTEGER or BYTE data type. For example, 8.0.

Therefore, if you want to use a REAL constant, include a decimal point.
This is sometimes done if all other values in an expression are of type
REAL so BASIC does not have to do a time-consuming type conversion
at run-time.

Numbers that do not have a decimal point but are too large to be
represented as integers are also stored in REAL format. The following are
examples of REAL values:

16.0 –10.1234567 –.002
100000055 2.67E+12 –458.9E–33

Automatic Type Conversion

Constants

Numeric Constants

Data Types and Data Structures
Chapter 9

9-7

Numbers that do not have a decimal point and are in the range of
–2,147,483,648 to +2,147,483,647 are treated as INTEGER numbers.
BASIC also accepts integer constants in hexadecimal in the range 0 to
$FFFFFFFF. Hexadecimal numbers must have a leading dollar sign. The
following are examples of INTEGER values

12 –2771 49908 $20
$FEED $0A 0

The two legal boolean constants are TRUE and FALSE:

DIM flag, state: BOOLEAN

flag := TRUE

state := FALSE

String constants consist of a sequence of any characters enclosed in
quotation marks. The binary value of each character byte can be 1 to 255.
Quotation marks can be included in the string by using two quotation
marks in a row to represent one quotation mark.

The null string (“”) is important because it represents a string having no
characters. It is analogous to the numeric zero. The following are STRING
examples:

“BASIC is a microcomputer language”

“AABBCCDD”

“” (a null string)

“An ”“older woman”“ is wiser”

Each BASIC variable is local to the procedure where it is defined. Local
means that it is only known to the program statements within that
procedure. You can use the same variable name in several procedures and
the variables will be completely independent. If you want other procedures
to be able to share a variable, you must use the RUN and PARAM
statements to pass the variable when a procedure calls another procedure.

Storage for variables is allocated from the BASIC workspace when the
procedure is called. You cannot force a variable to occupy a particular
absolute address in memory. When the procedure is exited, variable storage
is given back and the values stored in it are lost. Procedures can call
themselves (this is referred to as recursion) which causes another separate
storage space for variables to be allocated.

Boolean Constants

String Constants

Variables

Data Types and Data Structures
Chapter 9

9-8

ATTENTION: BASIC does not automatically initialize
variables. When a procedure is run, all variables, arrays, and
structures will have random values. Your program must assign
any initial value if needed.

Procedures may pass variables to other procedures. When this occurs, the
variables passed to the called procedure are referred to as parameters.
Parameters may be passed in two ways:

Name: Description:

by reference This allows values to be returned from the called procedure to calling
procedure variables.

by value This protects the values in the calling procedure so that the called
procedure cannot change them.

Parameters are usually passed by reference. This is done by enclosing the
names of the variables to be sent to the called procedure in parentheses as
part of the RUN statement. The storage address of each parameter variable
is evaluated and sent to the called procedure, which then associates those
addresses with names in a local PARAM statement.

The called procedure uses this storage as if it had been created locally
(although it may have a new name) and can change the values stored there.
Parameters passed by reference allow called procedures to return values to
their callers.

Parameters may be passed by value by writing the value to be passed as an
expression which is evaluated at the time of the call. Useful
expression-generators that do not alter values are +0 for numbers or +“”
for strings. For example:

RUN inverse(x) Passes x by reference.

RUN inverse(x+0) Passes x by value.

RUN translate(word$) Passes word$ by reference.

RUN translate(word$+“”) Passes word$ by value.

When parameters are passed by value, a temporary variable is created
when the expression is evaluated. The result is placed in temporary
storage. The address of this temporary storage is sent to the called
procedure. Therefore, the value actually given to the called procedure is a
copy of the result, and the called procedure cannot change the variable(s)
in the calling program.

Parameter Variables

Data Types and Data Structures
Chapter 9

9-9

Important: Expressions containing numeric constants are either
INTEGER or REAL; there is no type BYTE constant. Thus, BYTE-type
variables may be sent to a procedure as parameters, but expressions will be
of types INTEGER or REAL. For example, a RUN statement may evaluate
an INTEGER as a parameter and send it to the called procedure. If the
called procedure is expecting a BYTE-type variable, it uses only the
high-order byte of the (four-byte) INTEGER (which, if the value was
intended to be in BYTE-range, is probably zero.).

The DIM statement can create arrays of from one to three dimensions:

 A vector is a one-dimensional array.
 A table is a two-dimensional array.
 A matrix is a three-dimensional array.

The sizes of each dimension are defined when the array is typed (for
example, DIM plot(24,80):BYTE) by including the number of elements in
each dimension.

Therefore, a table dimensioned (24,80) has 24 rows (1-24) of 80 columns
(1 - 80) when accessed in the default (BASE 1) mode. You may elect to
access the elements of an array starting at zero (BASE 0), in which case
there are still 24 rows (now 0-23) and 80 columns (now 0-79). Arrays may
be composed of basic data types, complex data types, or other arrays.

The TYPE statement defines a new data type as a vector (a
one-dimensional array) of any basic or previously-defined types.
For example:

TYPE employee_rec = name:STRING; number(2):INTEGER; malesex:BOOLEAN

This structure differs from an array in that the various elements may be of
mixed types, and the elements are accessed by a field name instead of an
array index. For example:

DIM employee_file(250): employee_rec

employee_file(1).name := “Tex”

employee_file(20).number(2) := 115

Arrays

Complex Data Types

Data Types and Data Structures
Chapter 9

9-10

The complex structure allows you to store and manipulate related values
that are of many types, to create new types in addition to the five defined
data types, or to create data structures of unusual shape or size. The
position of the desired element in complex-type storage is known and
defined at compile time and need not be calculated at run time. Therefore,
complex structure accesses may be slightly faster than array accesses.

The elements of a complex structure may be copied to another similar
structure using a single assignment operator (:=). An entire structure may
be written to or read from mass storage as a single entity (for example,
PUT #2, employee_file).

Arrays or complex structures may be elements of subsequent complex
structures or arrays.

Chapter

10

10-1

Expressions, Operators, and Functions

Many BASIC statements evaluate expressions. The result of an evaluation
is always a value of some basic type: REAL, INTEGER, STRING, or
BOOLEAN. The expression itself may consist of values and operators. For
example, the expression 5+5 results in an integer with a value of ten.

A value can be a constant value, a variable name, or a function which
returns the result as a value. An operator combines values (typically, those
adjacent to the operator) and also returns a result.

When evaluating an expression, each value is copied to an expression
stack where functions and operators take their input values and return
results. If the expression is used in an assignment statement, the
assignment is made only when the result of the entire expression has been.
This allows the variable which is being modified to be one of the values in
the expression. The same principles apply for numeric, string, and boolean
operators. These principles make assignment statements such as X=X+1
legal in all cases, even though it would not make sense in a
mathematical context.

Any expression evaluates to one of the five basic data types. This does not
mean, however, that all the operators and operands in expressions have to
be of an identical type. Often types are mixed in expressions because the
result of some operator or function has a different type than its operands.
An example is the “less than” operator:

24 < 100

The less-than operator (<) operator compares two numeric operands. The
result of the comparison is of type BOOLEAN; in this case, the
value TRUE.

BASIC allows you to mix the three numeric types because it performs
automatic type conversion of operands. If different types are used in an
expression, the result is the same type as the operand(s) having the largest
representation. As a rule, any numeric type operand may be used in a
expression that is expected to produce a result of type REAL. Expressions
that must produce BYTE or INTEGER results must evaluate to a value that
is small enough to fit the representation. BASIC has a complete set of
functions that can perform compatible type conversion. Type-mismatch
errors are reported by the second compiler pass when leaving edit mode.

Evaluation of Expressions

Expressions, Operators, and Functions
Chapter 10

10-2

Operators (excepting negation) perform some operation on two operands.
This produces a result, which is generally the same type as the operands.
The following table lists the operators available and the types they accept
and produce.

Operator: Function: Operand type: Result type:

– Negation NUMERIC NUMERIC

^ or ** Exponentiation NUMERIC (positive) NUMERIC

* Multiplication NUMERIC NUMERIC

/ Division NUMERIC NUMERIC

+ Addition NUMERIC NUMERIC

– Subtraction NUMERIC NUMERIC

NOT Logical Negation BOOLEAN BOOLEAN

AND Logical AND BOOLEAN BOOLEAN

OR Logical OR BOOLEAN BOOLEAN

XOR Logical EXCLUSIVE OR BOOLEAN BOOLEAN

+ Concatenation STRING STRING

= Equal to ANY BOOLEAN

<> or >< Not equal to ANY BOOLEAN

< Less than NUMERIC, STRING 1 BOOLEAN

<= or =< Less than or Equal NUMERIC, STRING 2 BOOLEAN

> Greater than NUMERIC, STRING 3 BOOLEAN

>= or => Greater than or Equal NUMERIC, STRING 4 BOOLEAN

When comparing strings, the ASCII collating sequence is used, so that 0 < 1 < ... < 9 < A < B<
... < Z < a < b< ... < z

Important: NUMERIC refers to either BYTE, INTEGER, or REAL types.

Operators

Expressions, Operators, and Functions
Chapter 10

10-3

Operators have precedence. This means they are evaluated in a specific
order. Parentheses can override natural precedence. However, the compiler
may remove extraneous parentheses. The legal operators are listed here, in
precedence order from highest to lowest:

Precedence: Operator:

Highest Precedence NOT

–(negate)

^

**

*

/

+

–

>

< <> = >= <=

AND

Lowest Precedence OR

XOR

Operators of equal precedence are shown on the same line, and are
evaluated left to right in expressions. The only exception to this rule is
exponentiation, which is evaluated right to left. Raising a negative number
to a power is not legal in BASIC.

In the following examples, BASIC expressions on the left are evaluated as
indicated on the right. Either form may be entered, but the decompiler
always generates the form on the left:

BASIC representation: Equivalent form:

a:= b+c**2/d a:= b+((c**2)/d)

a:= b>c AND d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=e)

a:= (b+c+d)/e a:= ((b+c)+d)/e

a:= b**c**d/e a:= (b**(c**d))/e

a:= –(b)**2 a:= (–b)**2

a:=b=c a:= (b=c) (returns BOOLEAN value)

Operator Precedence

Expressions, Operators, and Functions
Chapter 10

10-4

Functions accept one or more arguments enclosed in parentheses, perform
some operation, and return a value. They may be used as operands in
expressions. Functions expect that the arguments passed to them are
expressions, constants, or variables of a certain type and return a result of a
certain type. Giving a function an argument of an incompatible type results
in an error.

In the descriptions of functions that follow, the following notation
describes the type required for the parameter expressions:

Name: Description:

<num> Specifies any numeric-result expression.

<str> Specifies any string-result expression.

<int> Specifies any integer-result expression.

The functions below return REAL results. Accuracy of transcendental
functions is 8+ decimal digits. Angles can be either degrees or radians (see
DEG/RAD statement descriptions).

Important: Transcendental functions take a long time to return a value if
passed an extremely large value (for example, SIN(100000000)).

Name: Description:

SIN(<num>) Trigonometric sine of <num>. Result: –1 <= SIN(<num>) <= 1

COS(<num>) Trigonometric cosine of <num>. Result: –1 <= COS(<num>) <= 1

TAN(<num>) Trigonometric tangent of <num>.

ASN(<num>) Trigonometric arcsine of <num>. Result: –PI/2 <= ASN(<num>) <= PI/2

ACS(<num>) Trigonometric arcosine of <num>. Result: 0 <= ACS(<num>) <= PI

ATN(<num>) Trigonometric arctangent of <num>. Result: –PI/2 <= ATN(<num>) <= PI/2

LOG(<num>) Natural logarithm (base e) of <num>, which must be positive.

LOG10(<num>) Logarithm (base 10) of <num>, which must be positive.

SQR(<num>) Square root of <num>, which must be positive.

SQRT(<num>) Square root of <num>; same as SQR.

EXP(<num>) e (2.71828183) raised to the power <num>, which must be a
positive number.

FLOAT(<num>) <num> converted to type REAL (from BYTE or INTEGER).

INT(<num>) Truncates all digits to the right of the decimal point of a REAL <num>.
Examples: INT(0.21) = 0. INT(–2.5) = –2.

PI The constant 3.141592653589793.

RND(<num>) If <num>=0, returns random x, 0 <= x < 1.
If <num>>0, returns random x, 0 <= x < <num>.
If <num><0, use ABS(<num>) as new random number seed.

Functions

Expressions, Operators, and Functions
Chapter 10

10-5

The following functions return results of type INTEGER or BYTE:

Name: Description:

FIX(<num>) Rounds REAL <num> and converts to type INTEGER.

MOD(<num1>,<num2>) Modulus (remainder) function. MOD returns the remainder of <num1>
divided by <num2>. If <num1> is negative, the result is negative.
Examples: MOD(9,5) = 4 ; MOD(–11,3) = –2

ADDR(<name>) Absolute memory address of variable, array, or structure named <name>.

SIZE(<name>) Storage size in bytes of variable, array, or structure named <name>.

ERR Error code of most recent error, automatically resets to zero when
referenced.

PEEK(<int>) Value of byte at memory address <int>.

WARNING: The specified memory address must be within the limits of
accessible memory space. PEEK(–1) gives a bus error on most systems.
This causes BASIC to abort.

POS Current character position of PRINT buffer.

ASC(<str>) Numeric value of first character of <str>.

LEN(<str>) Length of string <str>.

SUBSTR(<str1>,<str2>) Substring search: returns starting position of first occurrence of <str1> in
<str2>, or 0 if not found.

INKEY(#<num>) Returns the number of characters in data buffer.

FILSIZ(#<num>) Returns size of a file.

The following functions can return any numeric type, depending on the
type of the input parameter:

Name: Description:

ABS(<num>) Absolute value of <num>.

SGN(<num>) Signum of <num>: –1 if <num> < 0; 0 if <num> = 0; or 1 if <num> > 0.

SQ(<num>) Square <num>.

VAL(<str>) Convert type STRING to type NUMERIC.

Expressions, Operators, and Functions
Chapter 10

10-6

The following functions perform bit-by-bit logical operations on integer or
byte data types and return integer results. Do not confuse them with the
BOOLEAN-type operators.

Name: Description:

LAND(<num>,<num>) Logical AND

LOR(<num>,<num>) Logical OR

LXOR(<num>,<num>) Logical EXCLUSIVE OR

LNOT(<num>) Logical NOT

These functions return a result of type STRING:

Name: Description:

CHR$(<int>) ASCII character equivalent of <int>. <int> must be within range
of 0-127.

DATE$ Date and time, format: yy/mm/dd hh:mm:ss.

LEFT$(<str>,<int>) Leftmost <int> characters of <str>.

RIGHT$(<str>,<int>) Rightmost <int> characters of <str>.

MID$(<str>,<int1>,<int2>) Middle <int2> characters of <str> starting at character position
<int1>.

STR$(<num>) Converts numeric type <num> to displayable characters of type
STRING representing the number converted.

TRIM$(<str>) <str> with trailing spaces removed.

The following functions return BOOLEAN values:

Name: Description:

TRUE Always returns TRUE.

FALSE Always returns FALSE.

EOF(#<num>) End-of-file test on disk file path <num>, returns TRUE if
end-of-file condition exists.

Chapter

11

11-1

Program Statements and Structure

A BASIC program can be written as a single procedure, or it may be
divided into a number of smaller procedures, each of which performs a
specific function.

Single procedure programs may be useful when the program is relatively
small. However, large complex programs are generally much easier to
develop, test, and maintain when the program is divided into several
procedures. To do this, you should create a main routine which calls other
BASIC procedures to perform specific functions as subroutines. These
BASIC procedures may in turn call other BASIC procedures in the same
manner. These techniques reflect sound structured programming practice.

A procedure consists of any number of program statement lines. Each line
can have an optional line number. More than one program statement can be
placed on the same line if separated by backslash (\) characters. For
example, the following statements are equivalent:

GOSUB 550 \ PRINT X,Y \ RETURN GOSUB 550

 PRINT X,Y

 RETURN

While these statements are functionally equivalent, the second is generally
considered preferable. The first method runs no faster and tends to hide the
structure of the program.

The number of characters on a line is dependent on the content of the line.
In general, lines should be limited to 128 characters or less, to avoid the
generation of errors when BASIC decompiles the I-code for listing
purposes or at run time.

Loop nesting is limited to 39 levels. Nested procedure and subroutine calls
are only limited by stack space.

Program readability is improved if all variables are declared with DIM
statements at the beginning of the procedure, but this is not mandatory.

Program Structure

Program Statements and Structure
Chapter 11

11-2

Line numbers are optional. They can be any integer number in the range of
1 to 32767. Only use line numbers where absolutely necessary (such as
with GOSUB). They make programs harder to understand, use additional
memory space, and increase compile time considerably. Line numbers are
local to procedures. That is, the same line number can be used in different
procedures without conflict.

You can terminate programs with END or STOP statements. These
statements are optional.

Assignment statements are used for computing or initializing of variables.
The two assignment statements available with BASIC are LET and POKE.

Assignment State

Syntax

[LET] <var> := <expr>

[LET] <var> = <expr>

[LET] <struct> := <struct>

[LET] <struct> = <struct>

Function

LET evaluates an expression and stores the result in <var>. <var> may be a
simple variable or data structure element. The result of the expression
(<expr>) must be of the same or compatible type as <var>.

BASIC accepts either = or := as an assignment operator. However, the
second form (:=) is preferred because it distinguishes the assignment
operation from a comparison (the test for equality). The := operator is also
used in PASCAL.

You can also use the assignment statement to copy the entire value of an
array or complex data structure to another array or complex data structure.
The data structures do not have to have the same type or shape. The only
restriction is that the size of the destination structure be the same or larger
than the source structure.

You can use this type of assignment to perform unusual type conversions.
For example, a string variable of 80 characters can be copied to a
one-dimensional array of 80 bytes.

Assignment Statements

LET

Program Statements and Structure
Chapter 11

11-3

Examples

A := 0.1

value := temp/sin(x)

DIM array1(100), array2(100)

array1 := array2

LET AUTHOR$:= FIRST_NAME$ + LAST_NAME$

DIM truth,lie:BOOLEAN

lie := 100 < 1

truth := NOT lie

count = total-adjustment

matrix(2).coefficient(n+2) := matrix(1).coefficient(n)

Store Data at Specific Memory Address

Syntax

POKE <integer expr> , <byte expr>

Function

POKE allows a program to store data at a specific memory address. The first
expression is used as the absolute address to store the type BYTE result of
the second expression. POKE can alter any memory address, so you must be
careful when using it.

ATTENTION: Using POKE with an invalid address causes
BASIC to abort.

POKE

Program Statements and Structure
Chapter 11

11-4

Examples

POKE ADDR(buffer)+5,ASC(“A”)

POKE 1200,14

POKE $1C00,$FF

POKE pointer,PEEK(pointer+1)

(* same as alphabet$:= “ABCDEFGHIJKLMNOPQRSTUVWXYZ” *)

FOR i=0 to 25

 POKE ADDR(alphabet$)+i,$40+i

NEXT i

POKE ADDR(alphabet$)+26,$00

Control statements affect the sequential execution of program statements.
They are used to construct loops or make decisions that alter program flow.
BASIC provides a selection of loop statements that allow you to create any
kind of loop using sound structured programming style. The control
statements are IF..THEN..ELSE, FOR..NEXT, WHILE..DO,
REPEAT..UNTIL, LOOP..ENDLOOP, GOTO, GOSUB..RETURN, ON
GOTO..RETURN, ON GOSUB..RETURN, and ON ERROR GOTO.

Control Statement

Syntax

IF <bool expr> THEN <statements>

[ELSE <statements>]

ENDIF

IF <bool expr> THEN <line #>

Function

The IF structure evaluates an expression to a BOOLEAN value. If the
result is TRUE, the statement(s) immediately following the THEN are
executed. If an ELSE clause exists, statements between the ELSE and
ENDIF are skipped. If the expression is evaluated to FALSE, control is
transferred to the first statement following the ELSE (if present) or to the
statement immediately following the ENDIF.

Control Statements

IF..THEN..ELSE

Program Statements and Structure
Chapter 11

11-5

A special form of the IF statement transfers execution to the statement
having a line number specified if the result of the expression is TRUE. The
line number follows immediately after THEN. This is an implied GOTO
statement. Use this with caution (as all GOTO statements should).

Examples

IF a < b THEN

 PRINT “a is less than b”

 PRINT “a:”;a;“ b:”;b

ENDIF

IF a < b THEN

 PRINT “a is less than b”

ELSE

 IF a=b THEN

 PRINT “a equals b”

 ELSE

 PRINT “a is greater than b”

 ENDIF

ENDIF

IF payment < balance THEN 400

Control Statement

Syntax

FOR <var> = <expr> TO <expr> [STEP <expr>]

NEXT <var>

Function

FOR..NEXT creates a loop that usually executes a specified number of times
while automatically increasing or decreasing a specified counter variable.

The first expression is evaluated and the result is stored in <var>. <var>
must be a simple integer or real variable. The second expression is
evaluated and stored in a temporary variable.

If you use STEP, its expression is evaluated and used as the loop
increment. If the increment is negative, the loop counts down.

FOR..NEXT

Program Statements and Structure
Chapter 11

11-6

The body of the loop (the statements between the FOR and NEXT) is
executed until the NEXT variable (a counter) is larger than the terminating
expression value. For negative STEP values, the loop executes until the
loop counter is less than the termination value. If the initial value of <var>
is beyond the terminating value, the body of the loop is never executed.

You can jump out of FOR..NEXT loops.

ATTENTION: When using REAL control and STEP
expressions, there is a possibility of not completing the number
of loops logically indicated. For example, the following loop
would seem to complete x number of loops. Due to the
rounding nature of REAL numbers, it may only complete
(x – 1) loops:

FOR a = 1/x TO 1 STEP 1/x

 .

 .

next a

To make sure that the loop is executed the correct number of times, use
INTEGER values for all expressions.

Examples

FOR var = min–1 TO min+max STEP increment-adjustment

 PRINT var

NEXT var

FOR x = 1000 TO 1 STEP –1

 PRINT x

NEXT x

Program Statements and Structure
Chapter 11

11-7

Control Statement

Syntax

WHILE <bool expr> DO

 <statements>

ENDWHILE

Function

This loop tests its control expression at the top of the loop. Statements
within the loop are executed as long as <bool expr> is TRUE. The body of
the loop is not executed if the boolean expression evaluates to FALSE
when first executed.

Examples

WHILE a<b DO is equivalent to 100 IF a>=b THEN 500

 PRINT a PRINT a

 a := a+1 a := a+1

ENDWHILE GOTO 100

 500 REM

DIM yes:BOOLEAN

yes=TRUE

WHILE yes DO

 PRINT “yes! ”;

 yes := POS<50

ENDWHILE

REM reverse the letters in word$

backward$:= “”

INPUT word$

WHILE LEN(word$) > 0 DO

 backward$:= backward$ + RIGHT$(word$,1)

 word$:= LEFT$(word$,LEN(word$)–1)

ENDWHILE

word$:= backward$

PRINT word$

WHILE..DO

Program Statements and Structure
Chapter 11

11-8

Control Statement

Syntax

REPEAT

 <statements>

UNTIL <bool expr>

Function

This loop tests its control expression at the bottom of the loop. The
statement(s) within the loop are executed until the result of <bool expr> is
TRUE. The body of the loop is always executed at least one time.

Examples

x = 0 is the same as x=0

REPEAT 100 PRINT x

 PRINT x x=x+1

 x=x+1 IF X <= 10 THEN 100

UNTIL x>10

(* compute factorial: n! *)

temp := 1.

INPUT “Factorial of what number? ”,n

REPEAT

 temp := temp * n

 n := n–1

UNTIL n <= 1.0

PRINT “The factorial is ”; temp

REPEAT..UNTIL

Program Statements and Structure
Chapter 11

11-9

Control Statement

Syntax

LOOP

 <statements>

ENDLOOP

EXITIF <bool expr> THEN <statements>

ENDEXIT

Function

LOOP..ENDLOOP and EXITIF..ENDEXIT are inherently related. They can be
used to construct loops with tests located anywhere in the body of the loop.
The LOOP and ENDLOOP statements define the body of the loop.
EXITIF clauses can be inserted anywhere inside the loop to leave the loop
if the result of its test is true.

Important: If there is no exit clause, you will create an endless loop.

EXITIF..ENDEXIT allows control to be passed to the next statement outside
the structure containing the EXITIF statement (this includes IF..THEN
statements). EXITIF evaluates an expression to a boolean result. If the
result is TRUE, the statements between the THEN and the ENDEXIT are
executed, and control is transferred outside the binding structure.
Otherwise, the statement following ENDEXIT is executed. This exit clause
is often used to perform some specific function upon termination of the
loop which depends on where the loop terminated.

EXITIF statements are almost always used when LOOP..ENDLOOP is
used, but they can also be useful in any type of loop or
conditional construct.

LOOP..ENDLOOP/
EXITIF..ENDEXIT

Program Statements and Structure
Chapter 11

11-10

Examples

LOOP is equivalent to 100 count = count+1

count = count+1 IF count <= 100 THEN

EXITIF count > 100 THEN PRINT count

 done = TRUE GOTO 100

ENDEXIT ELSE

 PRINT count done = TRUE

ENDLOOP ENDIF

 REM out of loop

INPUT x,y

LOOP

 PRINT

EXITIF x < 0 THEN

 PRINT “x became zero first”

ENDEXIT

 x := x–1

EXITIF y < 0 THEN PRINT “y became zero first”

ENDEXIT

 y := y–1

ENDLOOP

Control Statement

Syntax

GOTO <line #>

Function

GOTO unconditionally transfers execution flow to the line having the
specified number.

Important: The line number is a constant, not an expression or a variable.

Example

GOTO 1000

GOTO

Program Statements and Structure
Chapter 11

11-11

Control Statement

Syntax

GOSUB <line #>

 .
 .

<line#> <statements>

 RETURN

Function

GOSUB transfers program execution to a subroutine starting at the specified
line number. The subroutine is executed until a RETURN statement is
encountered which causes execution to resume at the statement following
the calling GOSUB. Subroutines may be nested to any depth.

Example

FOR n := 1 to 10

 x := SIN(n)

 GOSUB 100

NEXT n

FOR m := 1 TO 10

 x := COS(m)

 GOSUB 100

NEXT m

STOP

100 x := x/2

PRINT x

RETURN

GOSUB..RETURN

Program Statements and Structure
Chapter 11

11-12

Control Statement

Syntax

ON <integer expr> GOTO <line #> {,<line #>}

ON <integer expr> GOSUB <line #> {,<line #>}

Function

These statements evaluate an integer expression and use the result to select
a corresponding line number from an ordered list. Control is then
unconditionally transferred to that line number in ON GOTO statements or
as a subroutine in ON GOSUB statements.

These statements are similar to CASE statements in other languages.

Each <line #> in the ordered list is given a value (beginning with
1, 2, 3, ...). <integer expr> must evaluate to a positive INTEGER result
having a value between 1 and N; N being the highest line number in the
list. N is limited by input line length and the number of digits in each line
number. The best case limit for N is 60.

Important: If the expression has a result that does not correspond with the
ordered list, no GOSUB statement is selected and the next sequential
statement is executed.

ON GOTO/ON GOSUB

Program Statements and Structure
Chapter 11

11-13

Example

(* spell out the digits 0 to 7 *)

DIM digit:INTEGER

A$=“one digit only, please”

INPUT “type in a digit”; digit

ON digit+1 GOSUB 10,11,12,13,14,15,16,17

PRINT A$

STOP

 (* names of digits *)

10 A$:= “ZERO”

 RETURN

11 A$:= “ONE”

 RETURN

12 A$:= “TWO”

 RETURN

13 A$:= “THREE”

 RETURN

14 A$:= “FOUR”

 RETURN

15 A$:= “FIVE”

 RETURN

16 A$:= “SIX”

 RETURN

17 A$:= “SEVEN”

 RETURN

Control Statement

Syntax

ON ERROR [GOTO <line #>]

Function

This statement sets a trap that transfers control to the specified line number
when a non-fatal run-time error occurs. If no ON ERROR GOTO has been
executed in a procedure before an error occurs, the procedure stops and
enters DEBUG mode. You can turn off the error trap by executing ON
ERROR without a GOTO.

This statement is often used with the ERR function which returns the
specific error code, and the ERROR statement which artificially
generates errors.

ON ERROR GOTO

Program Statements and Structure
Chapter 11

11-14

Important: ERR automatically resets to zero any time it is called.

Example

(* List a file *)

DIM path,errnum: INTEGER; name: STRING[45]

DIM line: STRING[80]

ON ERROR GOTO 10

INPUT “File name? ”; name

OPEN #path,name:READ

LOOP

 READ #path, line

 PRINT line

ENDLOOP

10 errnum=ERR

IF errnum = 211 THEN

(* end-of-file *)

 PRINT “Listing complete.”

 CLOSE #path

 END

ELSE

(* other errors *)

 PRINT “Error number ”; errnum

 END

ENDIF

Program Statements and Structure
Chapter 11

11-15

Execution statements run procedures, stop execution of procedures, create
shells, or affect the current execution of the procedure.

Run Procedure

Syntax

RUN <proc name> [(<param> {,<param>})]

Function

RUN calls a procedure by name. When that procedure ends, control passes
to the statement after the RUN statement. It is most often used to call a
procedure inside the workspace, but it can also be used to call a previously
compiled procedure or a 68000 machine language procedure outside the
workspace. The name can be optionally taken from a string variable.

Parameter Passing

RUN can include a list of parameters enclosed in parentheses to be passed to
the called procedure. The called procedure must have PARAM statements
of the same size and order to match the parameters passed to it by the
calling procedure.

The parameters can be variables, constants, or the names of entire arrays or
data structures. They can be of any type, except variables of type BYTE.
However, BYTE arrays are allowed.

If a parameter is a constant or expression, it is passed by value. A
parameter passed by value is evaluated and placed in a temporary storage
location and the address of the temporary storage is passed to the called
procedure. Parameters passed by value can be changed by the receiving
procedure, but the changes are not reflected in the calling procedure.

If the parameter is the name of a variable, array, or data structure, it is
passed by reference. When passed by reference, the address of that storage
is sent to the called procedure, and the value in that storage may be
changed by the receiving procedure. These changes are reflected in the
calling procedure.

Execution Statements

RUN

Program Statements and Structure
Chapter 11

11-16

Calling External Procedures

If the procedure named by RUN cannot be found in the workspace, BASIC
checks to see if it was loaded by OS-9 outside the workspace. If it is not
found there, BASIC tries to find a disk file having the same name in the
current execution directory, loads it, and runs it.

In either case, BASIC checks to see if the called procedure is a BASIC
I-code module or a 68000 machine language module and executes it
accordingly. If it is a 68000 machine language module, BASIC executes a
JSR instruction to its entry point and the module is executed as 68000
native code. The machine language routine can return to the original
calling procedure by executing an RTS instruction. The diagram on the
next page shows what the stack frame passed to machine-language
subroutines looks like.

Machine language modules return error status by setting the carry bit of the
MPU condition codes register and by setting the low order word of register
D1 to the appropriate error code. For an example of a machine language
subroutine (SYSCALL), see Appendix A.

After an external procedure has been called but is no longer needed, the
KILL statement should be used to get rid of it so its memory space can be
used for other purposes.

Example

PROCEDURE trig_table

num1 := 0 \ num2 := 0

REPEAT

 RUN display(num1,SIN(num1))

 RUN display(num2,COS(num2))

 PRINT

UNTIL num1 > 1

END

PROCEDURE display

PARAM passed,funcval

PRINT passed;“:”;funcval,

passed := passed + 0.1

END

Program Statements and Structure
Chapter 11

11-17

Figure 11.1
Stack Frame Passed to Machine Language Procedures

more parameters

size of 2nd param

addr of 2nd param

size of 1st param

return address

addr of 1st param

parameter count

8 bytes

4 bytes

4 bytes

68000 Stack Register Pointer

Register Value

68000 Register D1

68000 Register D0

higher addresses

Program Statements and Structure
Chapter 11

11-18

Stop Execution of Procedure

Syntax

KILL <proc name>

Function

KILL unlinks an external procedure, possibly returning system memory,
and removes it from BASIC’s procedure directory. If the procedure is
inside the workspace, nothing happens and no error is generated. KILL can
be used with auto-loading PACKed procedures as an alternative to CHAIN
when program overlay is desired.

The procedure name may be optionally called from a string variable.

ATTENTION: It can be fatal to OS-9 to KILL an
active procedure.

When KILL is used with RUN, both statements must use the
same string variable which contains the name of the procedure.
See the first example below:

Examples

LET procname$=“average”

RUN procname$

KILL procname$

INPUT “Which test do you want to run? ”,test$

RUN test$

KILL test$

KILL

Program Statements and Structure
Chapter 11

11-19

Execute Shell Command Line

Syntax

CHAIN <SHELL command line>

Function

CHAIN performs an OS-9 chain operation on the shell, passing the specified
command line as a parameter. CHAIN causes BASIC to be exited, unlinked,
and its memory returned to OS-9. The command line should evaluate to the
name of an executable module (such as BASIC), passing parameters if
appropriate.

CHAIN can begin execution of any module, not just BASIC. It executes the
module indirectly through the shell. This allows CHAIN to use the shell’s
parameter processing. This leaves an extra active shell. Programs that
repeatedly chain to each other eventually find all memory filled with
waiting shells. To prevent this, use the shell’s ex option.

Consult Using Personal OS-9 or Using Professional OS-9 for more details
on the capabilities of the shell.

Important: If it is necessary to pass an open path to another program
using the CHAIN command, use the shell’s ex option.

Examples

CHAIN “ex BASIC menu”

CHAIN “BASIC #10k sort (“”datafile“”,“”tempfile“”)”

CHAIN “DIR /D0”

CHAIN “Dir; Echo * Copying Directory *; ex basic09 copydir”

CHAIN

Program Statements and Structure
Chapter 11

11-20

Create a Shell Process

Syntax

SHELL <SHELL command line>

Function

SHELL allows BASIC programs to run any OS-9 command or program.
SHELL gives access to virtually any OS-9 function including
multiprogramming, utility commands, terminal, and I/O control.

Consult Using Personal OS-9 or Using Professional OS-9 for a detailed
discussion of OS-9 standard commands.

SHELL requests OS-9 to create a new process. This initially executes the
shell, which is the OS-9 command interpreter. The shell can then call any
program in the system. The command line is evaluated and passed to the
shell to be executed as a command line. If no command line is specified,
BASIC is temporarily suspended and the shell process displays prompts
and accepts commands in its normal manner. When the shell process
terminates, BASIC becomes active again and resumes execution at the
statement following the SHELL statement.

Examples

SHELL “copy file1 file2” Sequential execution

SHELL “copy file1 file2&” Concurrent execution

SHELL “edt document” Calling text editor

SHELL “asm source o=obj ! spl &” Concurrent assembly

SHELL “” Transfer control to SHELL

SHELL

Program Statements and Structure
Chapter 11

11-21

End Procedure Execution

Syntax

END [<output list>]

Function

END stops execution of the procedure and returns to the calling procedure
or to BASIC’s command mode if it was the highest level procedure. If an
output list is specified, END prints the list to standard output (the same as a
PRINT statement).

END is an executable statement. You can use it several times in the same
procedure. END is optional; it is not required at the bottom of a procedure.

Examples

END

END “I have finished execution”

Stop Procedure Execution

Syntax

STOP [<output list>]

Function

STOP immediately terminates execution of all procedures and returns to the
command mode. If an output list is specified, it also executes like a
PRINT statement.

END

STOP

Program Statements and Structure
Chapter 11

11-22

End Procedure Execution and BASIC

Syntax

BYE

Function

BYE ends execution of the procedure and terminates BASIC. Any open files
are closed, and any unsaved procedures or data in the workspace is lost.
You can use BYE to create packed programs and/or programs to be called
from OS-9 procedure files.

ATTENTION: BYE causes BASIC to abort. Only use it if the
program has been saved before it is tested!

Set Precision

Syntax

DIGITS [<int expr>]

Function

DIGITS controls the precision of real numbers displayed by a PRINT
statement. If no <int expr> is specified, DIGITS returns the
current precision.

DIGITS also controls the precision of transcendental functions. If the result
of the expression is not between 1 and 15, the result is brought into that
range with no error.

Example

PROCEDURE DIGITDEMO
 DIM a,b : REAL
 DIGITS 2
 a := 9.2
 b := 0.11
 PRINT a,b,a*b

RUN DIGITDEMO
9.2 .11 1.

BYE

DIGITS

Program Statements and Structure
Chapter 11

11-23

Generate Error

Syntax

ERROR<integer expr>

Function

ERROR generates an error having the error code specified by the result of
evaluation of the expression. ERROR is often used for testing error routines.
Also see the ON ERROR description.

Suspend Execution

Syntax

PAUSE [<output list>]

Function

PAUSE suspends execution of the procedure and causes BASIC to enter
debug mode. If an output list is specified, it also executes as a PRINT
statement. When a PAUSE is encountered the following is displayed:

<output list> BREAK IN PROCEDURE <procedure name>

You can use the debug mode CONT command to resume procedure
execution at the following statement.

Examples

PAUSE

PAUSE “now outside main loop”

ERROR

PAUSE

Program Statements and Structure
Chapter 11

11-24

Change Directories

Syntax

CHD <pathlist>

CHX <pathlist>

Function

CHD and CHX change the current default data or execution directories,
respectively. The pathlist must refer to a file which has the DIR attribute.
For more information on the OS-9 directory structure, consult Using
Personal OS-9 or Using Professional OS-9.

Set Angle Units to Degrees or Radians

Syntax

DEG

RAD

Function

DEG and RAD set the procedure’s state flag to assume angles stated in
degrees or radians in SIN, COS, TAN, ACS, ASN, and ATN functions.
This flag applies only to the currently active procedure. The default state
is radians.

Example

DIM a : REAL

DEG

INPUT “enter degree of angle”, a

PRINT “The sin of ”; a; “degrees is ”; SIN (a)

END

CHD/CHX

DEG/RAD

Program Statements and Structure
Chapter 11

11-25

Set Low Array Index

Syntax

BASE 0

BASE 1

Function

BASE 0 and BASE 1 indicate whether a particular procedure’s lowest array
or data structure index is zero or one. The default is one. These statements
do not affect the string operations where the beginning character of a string
is always index one.

Turn Trace Mode On/Off

Syntax

TRON

TROFF

Function

TRON and TROFF turn the trace mode on or off. This is useful for debugging.
When trace mode is turned on, each statement is decompiled and printed
before execution. The result of each expression evaluation is printed as
it occurs.

BASE0/BASE1

TRON/TROFF

Program Statements and Structure
Chapter 11

11-26

Comment Statement

Syntax

REM <chars>

(* <chars> [*)]

Function

These statements are used to put comments in programs. The second form
of the statement is for compatibility with PASCAL programs. Comments
are retained in the I-code but are removed by the PACK compile command.
The exclamation point (!) character can be typed in place of the keyword
REM when editing programs. The compiler trims away extra spaces
following REM to conserve memory space.

Examples

REM this is a comment

(* This is also a comment *)

(* This is another kind of comment

Comment Statements

REM/(*

Program Statements and Structure
Chapter 11

11-27

The DIM, PARAM, and TYPE statements are called declaration statements
because they define and/or declare variables, arrays, and complex data
structures. DIM and PARAM are almost identical, the difference being that
DIM declares storage used exclusively within the procedure, and PARAM
declares variables received from another calling procedure.

You do not need to use DIM for simple variables of type REAL, because
this is the default format for undeclared variables. You also do not need to
use DIM for 32-character STRING type variables (any name ending with a
$ is automatically assigned this type). Even though you do not have to
declare variables in these two cases, using DIM improves your program’s
internal documentation. The things you must declare are:

 any simple variables of type BYTE, INTEGER, or BOOLEAN
 any simple STRING variables shorter or longer than 32 characters
 arrays of any type
 complex data structures of any type

The TYPE statement does not really create variable storage. Instead, it
describes a new data structure type that can be used in DIM or PARAM
statements in addition to the five basic data types built-in to BASIC.
Therefore, TYPE is only used in programs that use complex
data structures.

Declare Variables, Arrays, Etc.

Syntax

DIM <var> {, <var>} : <type> {;<var> {, <var>} : <type>}

Function

DIM declares simple variables, arrays, or complex data structures of the five
basic types or any user-defined type. During compilation, BASIC assigns
storage required for all variables declared in DIM statements.

Declaring Simple Variables

Simple variables are declared by using the variable name in a DIM
statement without a subscript. If variables are not explicitly declared, they
are automatically assumed to be REAL or, if the variable name ends with a
$ character, STRING[32]. Therefore, you must explicitly declare all simple
variables of other types. For example:

DIM logical:BOOLEAN

Declaration Statements

DIM

Program Statements and Structure
Chapter 11

11-28

You can declare several variables in sequence by separating each variable
with a comma (,):

DIM a,b,c: STRING

In addition, you can declare several different types in a single DIM
statement by using a semicolon (;) to separate different types:

DIM a,b,c:INTEGER; n,m:decimal; x,y,z:BOOLEAN

In this example a, b, and c are type INTEGER, n and m are type decimal (a
user-defined type), and x, y, and z are type BOOLEAN.

String variables are declared the same way, except you can specify an
optional maximum string length. If a length is not explicitly given, 32
characters are assumed:

DIM name:STRING[40]; address,city:STRING; zip:REAL

In this case, name is a string variable of 40 characters maximum, address
and city are string variables of 32 characters each, and zip is a
real variable.

Array Declarations

Arrays can have one, two, or three dimensions. The DIM statement format
is the same as for simple variables except each name is followed by a
subscript(s) to indicate its size. The maximum subscript size is
2,147,483,647, although memory may limit this. You can mix simple
variable and array declarations in the same DIM statement:

DIM a(10),b(20,30),c:INTEGER; x(5,5,5):STRING[12]

In this example, a is an array of 10 integers, b is a 20 by 30 table of
integers, c is a simple integer variable, and x is a matrix of
12-character strings.

Arrays can be any basic or user-defined type. By declaring arrays of
user-defined types, structures of arbitrary complexity and shape can
be generated.

Program Statements and Structure
Chapter 11

11-29

The following is an example declaration that generates a doubly-linked list
of character strings. Each element of the array consists of the string
containing the data and two integer pointers.

TYPE link_pointers = fwd,back: INTEGER

TYPE element = info: STRING[64]; ptr: link_pointers

DIM list(100): element; index: INTEGER

(* make a circular list *)

BASE0

FOR index := 0 TO 99

 list(index).info := “secret message ” + STR$(index)

 list(index).ptr.fwd := index+1

 list(index).ptr.back := index–1

NEXT index

(* fix the ends *)

list(0).ptr.back := 99

list(99).ptr.fwd := 0

(* Print the list *)

index=0

REPEAT

 PRINT list(index).info

 index := list(index).ptr.fwd

UNTIL index=0

END

Declare Variables, Arrays, Etc.

Syntax

PARAM <var> {, <var>} : <type> {;<var> {, <var>} : <type>}

Function

PARAM is almost identical to the DIM statement, but it does not create
variable storage. Instead, it describes what parameters the called procedure
expects to receive from the calling procedure.

You must insure that the total size of each parameter conforms to the
amount of storage expected for each parameter in the called procedure as
specified by the PARAM statement.

PARAM

Program Statements and Structure
Chapter 11

11-30

BASIC checks the size of each parameter, but it does not check the type.
You should ensure that the parameters evaluated in the RUN statement and
sent to the called procedure agree exactly with the PARAM statement
specification with respect to the number of parameters, their order, size,
shape, and type.

Because type-checking is not performed, if you understand how the system
operates, you can make the parameter passing operation perform useful but
normally illegal type conversions of identically-sized data structures. For
example, passing a string of 80 characters to a procedure expecting a
BYTE array having 80 elements assigns the numeric value of each
character in the string to the corresponding element of the byte array.

Define Data Types

Syntax

TYPE <typename> = <type decl>

Function

TYPE defines new data types. New data types are defined as a vector (a
one-dimensional array) of previously defined types. This structure differs
from an array in that the various elements may be of different types, and
the elements are accessed by field name instead of an array index. The
syntax of the <type decl> conforms to the syntax of the DIM and PARAM
statements. For example:

TYPE cust_recd := name,address(3):STRING; balance

This example creates a new data type called cust_recd which has three
named fields:

 a field called name which is a string
 a field called address which is a vector of three strings
 a field called balance which is a (default) REAL value

TYPE can include previously defined types so that you can create complex
structures such as lists and trees. TYPE does not create any variable storage
itself; the storage is created when the newly defined type is used in a
DIM statement.

The following example creates an array having 250 elements of type
cust_recd. cust_recd is defined above.

DIM customer_file(250):cust_recd

TYPE

Program Statements and Structure
Chapter 11

11-31

To access elements of the array in assignment statements, the field name
and the index are used:

name$ = customer_file(35).name

customer_file(N+1).address(3) = “New York, NY”

customer_file(X).balance= 125.98

The complex structure allows you to create appropriate data types by
providing more natural organization and association of data. Additionally,
the position of the desired element is known and defined at compilation
time and need not be calculated at run time, unlike arrays. Therefore, they
can be accessed faster than arrays.

Type Structure Size

Occasionally, you need to know the exact size of a data structure. Each
basic data type is stored in a certain format:

Type: Memory format:

BYTE One Byte

INTEGER Four Bytes

REAL Eight Bytes

STRING One Byte / Character

BOOLEAN One Byte

While it would seem easy to just add the components’ sizes together to
find the size of the entire structure, it is not that simple. BASIC only starts
INTEGERS, REALS, and complex data structures on an even word
boundary. Additionally, complex data structures are of even word length.
Therefore, BASIC pads certain structures with an empty byte.

For example, the size of the following structure’s individual components
add up to nine bytes:

TYPE junk = a : BYTE; b,c : INTEGER

The actual size of this structure is ten bytes. BASIC inserts a byte between
a and b.

Program Statements and Structure
Chapter 11

11-32

The following examples show different data structures and their
corresponding size:

Structure: Size:

TYPE demo = a : BYTE; b : REAL; c : BYTE 12

TYPE junk = d(3) : STRING [3]; e : BOOLEAN 10

TYPE crap = f : BYTE; g : demo; h : BYTE; i : junk 26

If you are ever in doubt of the size of a data structure, you can use the
function: SIZE (<name>). <name> is the name of the variable, array, or
structure. The size is returned as the number of bytes of the structure.

Chapter

12

12-1

Files and Unified Input/Output

Hardware input/output (I/O) devices used by OS-9 also work like files.
You can generally use any I/O facility regardless of whether you are
working with disk files or I/O devices (such as printers). This single
interface is standard for any device. Simple communication facilities allow
any device to be used with any other device. This concept is known as
unified I/O .

Important: Unified I/O can benefit routine programming. For example,
file operations can be debugged by communicating with a terminal or
printer instead of a storage device, and procedures which normally
communicate with a terminal can be tested with data coming from and sent
to a storage device.

BASIC normally works with two types of files:

 sequential files
 random-access files

A sequential file sends or receives textual data only in the order it is
received. Once you have accessed a number of bytes, you cannot
(generally) start over at the beginning of a sequential file. Many I/O
devices such as printers are necessarily sequential.

A sequential file contains only valid ASCII characters. The READ and
WRITE commands perform format conversion similar to that done
automatically in INPUT and PRINT commands. A sequential file contains
record-delimiter characters (carriage return) which separate the data
created by different WRITE operations. Each WRITE command sends a
complete sequential-file record, which is a variable number of characters
terminated by a carriage return. Each READ reads all characters up to the
next carriage return.

A random-access file sends and receives data in binary form (by the PUT
or GET statements) exactly as it is internally represented in BASIC. This
minimizes both the time involved in converting the data to and from ASCII
representation and reducing the file space required to store the data.

You can PUT and GET individual bytes or a substructure of many bytes (in
a complex structure). The GET structure statement recovers the number of
bytes associated with that type of structure. You can move to a particular
byte in a random-access file by using SEEK to find it and using PUT or
GET sequentially from that point.

Files and Unified
Input/Output

Files and Unified Input/Output
Chapter 12

12-2

In general, SEEK #path,0 is equivalent to the REWIND used in some
forms of BASIC. Because the random-access file contains no
record-separators to indicate the size of particular elements of the file, use
the SIZE function to determine the size of a single element, then use SEEK
to move to the desired element within the file.

A new file is created on a storage device by executing CREATE. Once a
file exists, the OPEN command sets up a channel to the desired device and
returns that path number to the BASIC program. This channel number is
then used in file-access operations (READ, WRITE, GET, PUT, SEEK,
etc.). When you are finished with the file, you should close it to assure that
the file system has updated all data back on to magnetic media.

A path is a description of a channel through which data flows to or from a
given program or device. When a path is created, OS-9 returns a unique
number to identify the path in subsequent file operations. I/O statements
use this path number to specify the file to use.

Important: In order for data to flow to or from a device, there must be an
associated OS-9 device driver. For detailed information on device drivers,
consult the OS-9 Technical Manual.

Three path numbers have special meanings because they are standard I/O
paths representing BASIC’s interactive input/output. These are
automatically opened for you and should not be closed except in special
circumstances. The standard I/O path numbers are:

Number: Description:

0 Standard Input (Keyboard)

1 Standard Output (Terminal Display)

2 Standard Error/Status (Terminal Display)

I/O Paths

Files and Unified Input/Output
Chapter 12

12-3

The following table summarizes the I/O statements within BASIC and their
general use. This reflects typical use; most statements can be used with any
I/O device or file. Sometimes certain statements are used in unusual ways
by advanced programmers to achieve certain special effects.

Statement: Generally used with : Data format (file type):

INPUT Keyboard (interactive input) Text (Sequential)

PRINT Terminals, Printers Text (Sequential)

OPEN Disk Files and I/O Devices Any

CREATE Disk Files and I/O Devices Any

CLOSE Disk Files and I/O Devices Any

DELETE Disk Files Any

SEEK Disk Files Binary (Random)

READ Disk Files Text (Sequential)

WRITE Disk Files Text (Sequential)

GET Disk Files and I/O Devices Binary (Random)

PUT Disk Files and I/O Devices Binary (Random)

Accept Input

Syntax

INPUT [#<path num>,] [“<prompt>”,] <input list>

Function

INPUT accepts input during the execution of a program. Input is normally
read from the standard input device (terminal) unless an optional path
number is specified. When the INPUT statement is encountered, execution
is suspended and a question mark prompt (?) prompt is displayed.

INPUT is both an input and output statement. If the optional prompt string
is specified, it is displayed instead of the normal ? prompt. Therefore, if a
path other than the default standard input path is used, open the path in
update mode. This makes INPUT dangerous if used on disk files. Unless
you like prompts in your data, use READ.

The entered data is assigned in order to the variable names as they appear
in the input list. The variables can be of any basic type, and the input data
must be of the same or compatible type. The line is terminated by a
carriage return. There must be at least as many input items given as
variables in the input list. The length of the input line cannot exceed
256 characters.

INPUT

Files and Unified Input/Output
Chapter 12

12-4

If any error occurs (type mismatch, insufficient amount of data, etc.), you
must re-enter the entire input line. The following message is displayed,
followed by a new prompt:

INPUT ERROR – RETYPE

INPUT uses OS-9’s line input function (READLN) which performs line
editing such as backspace, delete, end-of-file, etc. To perform input
without editing, use the GET statement.

To test if data is available from the keyboard without hanging the program,
use the INKEY function. INKEY returns the number of characters in the
data buffer.

Examples

INPUT number,name$,location

INPUT #14, “What is your selection”, choice

INPUT “What’s your name? ”,name$

To read a single character (without editing) from the terminal

DIM char:STRING[1]

GET #0,char

Output to Path

Syntax

PRINT <output list>

PRINT #<path num>, <output list>

PRINT USING <str expr>, <output list>

PRINT #<path num>, USING <str expr>, <output list>

Function

PRINT outputs the values of the items in the output list to the standard
output device (path #1, the terminal) unless you specify another
path number.

PRINT

Files and Unified Input/Output
Chapter 12

12-5

The output list consists of one or more items separated by a comma or
semicolon delimiter. Each item can be a constant, variable, or expression
of any basic type. PRINT evaluates each item and converts the result to
corresponding ASCII characters which are then displayed.

If the separator character following the item is a semicolon, the next item
is displayed without any intermediate spacing. If a comma is used, spaces
are output so the next item starts at the next tab zone. The tab zones are 16
characters in length, starting at the beginning of the line. If the line is
terminated by a semicolon, the usual carriage return following the output
line is inhibited.

TAB(<expr>) can be used as an item in the output list. This function causes
the next item in the output list to start in the specified column (<expr>). If
the output line is already past the desired tab position, TAB is ignored.

A related function, POS, can be used in a program to determine the output
position at any given time. The output columns are numbered from one to
a maximum of 255. The size of BASIC’s output buffer varies according to
stack size at the moment.

The PRINT USING form of this statement is described at the end of
this chapter.

Examples

PRINT value,temp+(n/2.5),location$

PRINT #printer_path,“The result is ”; n

PRINT “what is ” + name$ + “’s age? ”;

PRINT “index: ”;i;TAB(25);“value: ”;value

(* print an 8–character line of all dashes *)

REPEAT

 PRINT “–”;

UNTIL POS >= 80

PRINT

Files and Unified Input/Output
Chapter 12

12-6

Open Path

Syntax

OPEN #<path num>,“<pathlist>” {: <access mode>}

Function

OPEN issues a request to OS-9 to open an I/O path to an existing file
or device.

The specified path number can be a variable. If so, it must be dimensioned
as type INTEGER or BYTE. It receives the path number OS-9 assigned to
the path. The path number references the specific file/device in subsequent
input/output statements.

The pathlist must be within quotes. A string variable is allowed. It is
evaluated and passed to OS-9 as the descriptive pathlist.

OPEN may also specify the path’s desired access mode which can be READ,
WRITE, UPDATE, EXEC, or DIR. The access mode defines which
direction I/O transfers occur. If no access mode is specified, UPDATE is
assumed and both reading and writing are permitted. The DIR mode allows
OS-9 directory-type files to be accessed, but should not be used with
WRITE or UPDATE modes. The EXEC mode causes the current execution
directory to be used instead of the current data directory. For more
information on files access modes, refer to Using Personal OS-9 or Using
Professional OS-9.

Examples

DIM printer_path:BYTE; name:STRING[24]

name=“/p”

OPEN #printer_path,name:WRITE

PRINT #printer_path,“Mary had a little lamb”

CLOSE #printer_path

DIM inpath:INTEGER

dev$=“/winchester/”

INPUT name$

OPEN #inpath,dev$+name$:READ

OPEN #path:userdir$:READ+DIR

OPEN #path,name$:WRITE+EXEC

OPEN

Files and Unified Input/Output
Chapter 12

12-7

Create a New File

Syntax

CREATE #<path num>,“<pathlist>” {: <access mode>}

Function

CREATE creates a new file on a multifile mass storage device such as disk or
tape. If the device is not of multifile type, CREATE works like an
OPEN statement.

The path number may be a variable. The variable name receives the path
number OS-9 assigned. The variable must be of BYTE or INTEGER type.
The pathlist must be within quotes. A string variable is allowed and is
evaluated and passed to OS-9 as the descriptive pathlist.

The access mode defines the direction of subsequent I/O transfers and
should be either WRITE or UPDATE. UPDATE mode allows the file to be
either read or written.

OS-9 has a single file type that can be accessed either sequentially or at
random. Files are byte-addressed, so no explicit record length need be
given (see GET and PUT statements). When a new file is created, it has an
initial length of zero. Files are expanded automatically by PRINT, WRITE,
or PUT statements that write beyond the current end of file.

Examples

CREATE #trans,“transactions”:UPDATE

CREATE #spool,“/user4/report”:WRITE

CREATE #outpath,name$:UPDATE+EXEC

CREATE

Files and Unified Input/Output
Chapter 12

12-8

Close Path

Syntax

CLOSE #<path num> {,#<path num>}

Function

CLOSE notifies OS-9 that one or more I/O paths are no longer needed. The
paths are specified by their number(s). If the closed path used a
non-sharable device (such as a printer), the device is released and can be
assigned to another user. The path must have been previously established
by means of OPEN or CREATE.

ATTENTION: Paths #0, #1, and #2 should never be closed
unless you immediately open a new path to take over the
standard path number.

Examples

CLOSE #master,#trans,#new_master

CLOSE #5,#6,#9

CLOSE #1 \(* closes standard output path *)

OPEN #path,“/T1” \(* Permanently redirects Std Output *)

CLOSE #0 \(* closes standard input path *)

OPEN #path,“/TERM” \(* Permanently redirects Std Input *)

CLOSE

Files and Unified Input/Output
Chapter 12

12-9

Delete File

Syntax

DELETE <pathlist>

DELETE deletes a mass storage file. The file’s name is removed from the
directory and all its storage is deallocated. Any data in the file is lost. The
pathlist must be within quotes. A string variable is allowed. It is evaluated
and passed to OS-9 as the descriptive pathlist.

You must have write permission for the file to be deleted. See Using
Personal OS-9 or Using Professional OS-9 for more information.

Examples

DELETE “/D0/old_junk”

name$=“file55”

DELETE name$

DELETE “/D2/”+name$ (deletes file named “/D2/file55”)

DELETE

Files and Unified Input/Output
Chapter 12

12-10

Seek to Address

Syntax

SEEK #<path num>,<real expr>

Function

SEEK changes the file pointer address of a mass storage file, which is the
address of the next data byte(s) that are to be read or written. Therefore,
SEEK is essential for random access of data in files using GET and PUT.

The <path num> may be an expression that specifies the path number of
the file. It must evaluate to a byte value. The <real expr> specifies the
desired file pointer address. It must evaluate to an INTEGER or REAL
value in the range 0 <= result <= 2,147,483,647. Any fractional part of the
result is truncated. Of course, the actual maximum file size depends on the
capacity of the device.

Although SEEK is normally used with random-access files, you can use it
to rewind sequential files. For example:

SEEK #path,0

This is the same as a rewind or restore function. This is the only form of
the SEEK statement that is generally useful for files accessed by READ
and WRITE. These statements use variable-length records, so it is difficult
to know the address of any particular record in the file.

Examples

SEEK #fileone,filptr*2

SEEK #outfile,208894

SEEK #inventory,(part_num – 1) * SIZE(inv_rcd)

SEEK

Files and Unified Input/Output
Chapter 12

12-11

Read Data

Syntax

READ #<path num>,<input list>

Function

READ reads input data in ASCII character format from a file or device.

The #<path num> may be an expression which specifies a path number.
The path number must have been previously opened by OPEN or CREATE
in READ or UPDATE access mode (except the standard input path #0).
Data is read starting at the path’s current file pointer address which is
updated as data is read.

READ calls OS-9 to read a variable length ASCII record. Individual data
items within the record are converted to BASIC’s internal binary format.
These results are assigned in order to the variables specified in the input
list. The input data must match the number and type of the variables in the
input list.

The individual data items in the input record are separated by ASCII null
characters. Numeric items can also be delimited by commas or space
characters. The input record is terminated by a carriage return character.

Important: READ is also used to read lists of expressions in the program.
See the DATA statement section for details.

Examples

READ #inpath,name$,address$,city$,state$,zip

PRINT #1,“height,weight? ”

READ #0,height,weight

READ

Files and Unified Input/Output
Chapter 12

12-12

Write Data

Syntax

WRITE #<path num>,<output list>

Function

WRITE writes data in ASCII character format on a file/device. The first
expression specifies the number of a path that was previously opened by
OPEN or CREATE in WRITE or UPDATE mode.

The output list consists of one or more expressions separated by commas.
Each expression can evaluate to any expression type. The result is then
converted to an ASCII character string and written on the specified path
beginning at the present file pointer which is updated as data is written.

If the output list has more than one item, ASCII null characters ($00) are
written between each output string. The last item is followed by a carriage
return character.

Important: This statement creates variable-length ASCII records.

Examples

WRITE #outpath,cat,dog,mouse

WRITE #xfile,LEFT$(A$,n),count/2

WRITE

Files and Unified Input/Output
Chapter 12

12-13

Read and Write Data Records

Syntax

GET #<path num>,<struct name>

PUT #<path num>,<struct name>

Function

GET and PUT read and write fixed-size binary data records to files or
devices, respectively. These are the primary I/O statements used for
random access input and output.

The path number may be an expression which is evaluated and used as the
number of the I/O path. The I/O path must have been previously opened by
OPEN or CREATE. Paths used by PUT statements must have been opened
in WRITE or UPDATE access modes, and paths used by GET statements
must be in READ or UPDATE mode.

The statement uses exactly one name which can be the name of a variable,
array, or complex data structure. Data is written from, or read into, the
variable or structure named. The data is transferred in BASIC’s internal
binary format without conversion. This affords high throughput compared
to READ and WRITE statements. Data is transferred beginning at the
current position of the path’s file pointer which is automatically updated.

OS-9’s file system does not inherently impose record structures on
random-access files. All files are considered continuous sequences of
addressable binary bytes. A byte or group of bytes located anywhere in the
file can be read or written in any order. Therefore, you can use the basic
file access system to create any desired record structure.

Record I/O in BASIC is associated with data structures defined by DIM
and TYPE. GET and PUT write entire data structures or parts of data
structures. PUT, for example, can write a simple variable, an entire array, or
a complex data structure in one operation.

To illustrate how this works, the following example is based on a simple
inventory system that requires a random access file having 100 records.
Each record must include the following information: the name of the item
(a 25-byte character string), the item’s list price and cost (both real
numbers), and the quantity on hand (an integer).

First, use TYPE to define a new data type that describes such a record:

TYPE inv_item=name:STRING[25];list,cost:REAL;qty:INTEGER

GET/PUT

Files and Unified Input/Output
Chapter 12

12-14

This statement describes a new record type called inv_item but does not
assign variable storage for it. Next, create two data structures: an array of
100 records of type inv_item called inv_array and a single working record
called work_rec:

DIM inv_array(100):inv_item

DIM work_rec:inv_item

To calculate the total size of each record, you can manually count the
number of bytes assigned for each type or use the built-in SIZE function.
SIZE returns the number of bytes assigned to any variable, array, or
complex data structure. The syntax is as follows:

SIZE(<name>)

For this example, SIZE(work_rec) returns the number 46, and
SIZE(inv_array) returns 4600. SIZE is often used with SEEK to position a
file pointer to a specific record’s address.

The following procedure creates a file called inventory and initializes it
with zeroes and nulls:

PROCEDURE makefile

TYPE inv_item =

name:STRING[25];list,cost:REAL;qty:INTEGER

DIM inv_array(100):inv_item

DIM work_rec:inv_item

DIM path:byte

CREATE #path,“inventory”

work_rec.name = “”

work_rec.list := 0.

work_rec.cost := 0.

work_rec.qty := 0

FOR n = 1 TO 100

 PUT #path,work_rec

NEXT n

Important: The assignment statements reference each named field of
work_rec by name, but PUT references the record as a whole.

Files and Unified Input/Output
Chapter 12

12-15

The following subroutine requests a record number, then requests data and
writes it in the file at the specified record:

INPUT “Record number ?”,recnum

INPUT “Item name? ”,work_rec.name

INPUT “List price? ”,work_rec.list

INPUT “Cost price? ”,work_rec.cost

INPUT “Quantity? ”,work_rec.qty

SEEK #path, (recnum – 1) * SIZE(work_rec)

PUT #path,work_rec

This routine uses a loop to read the entire file into the array inv_array:

SEEK #path,0 \ (* “rewind” the file *)

FOR k = 1 TO 100

 GET #path,inv_array(k)

NEXT k

Because entire structures can be read, you can eliminate the FOR/NEXT
loop with the following:

SEEK #path,0

GET #path,inv_array

This example is simple, but it illustrates the power of BASIC09’s complex
data structures and the random access I/O statements. When fully
exploited, this system has the following important characteristics:

 It is self-documenting. You can clearly see what a program does because
structures have descriptively named sub-structures.

 It is extremely fast.

 Programs are simplified and require fewer statements to perform I/O
functions than in other BASIC languages.

 It is versatile. By creating the appropriate data structures, you can read
or write almost any kind of data in any file, including files created by
other programs or languages.

These advantages are possible because a single GET or PUT statement can
move any amount of data, organized any way you want.

Files and Unified Input/Output
Chapter 12

12-16

Internal Data Statements

Syntax

DATA <expr> , { <expr> }
READ <input list>
RESTORE [<line number>]

Function

These statements provide an efficient way to build constant tables within
a program.

 DATA statements provide values.
 READ statements assign the values to variables.
 RESTORE statements set which data statement is read next.

The DATA statements have one or more expressions separated by commas.
They can be located anywhere in a program. The expressions are evaluated
each time the data statements are read and can evaluate to any type.

The following examples demonstrate DATA:

DATA 1.1,1.5,9999,“CAT”,“DOG”
DATA SIN(temp/25), COS(temp*PI)
DATA TRUE,FALSE,TRUE,TRUE,FALSE

The READ statement has a list of one or more variable names. When
executed, it reads input by evaluating the current expression in the current
data statement. The result must match the variable type. When all the
expressions in a DATA statement have been evaluated, the next DATA
statement is used. If there are no more DATA statements following,
processing wraps around to the first data statement in the program.

The RESTORE statement used without a line number causes the first
DATA statement in the program to be used next. If it is used with a line
number, the data statement having that line number is used next.

Example

 DATA 1,2,3,4

 DATA 5,6,7,8
100 DATA 9,10,11,12
 FOR N := 1 TO X
 READ ARRAY(N)
 NEXT N
 RESTORE 100
 READ A,B,C,D

DATA/READ/RESTORE

Files and Unified Input/Output
Chapter 12

12-17

BASIC09 has a powerful output editing capability useful for generating
reports and other applications where formatted output is required. The
output editing uses the PRINT USING statement:

PRINT [<path#>,] USING <str expr> , <output list>

You can use the optional path number expression to specify the path
number of any output file or device. If it is omitted, the output is written to
the standard output path.

The string expression is evaluated and used as a format specification. This
contains specific formatting directives for each item in the output list.
Blanks are not allowed in format strings.

The items in the output list can be constants, variables, or expressions of
any type. As each output item is processed, it is matched up with a
specification in the format list. The type of each expression result must be
compatible with the corresponding format specification. If there are fewer
format specifications than items in the output list, the format specification
list is repeated again from its beginning as many times as necessary.

A format string has one or more format specifications separated by
commas (,). There are two kinds of specifications:

 Those that control output editing of an item from the output list.

 Those that cause an output function by themselves (such as tabbing
and spacing).

There are six basic output editing directives. Each has a corresponding
one-letter identifier:

Name: Description:

R Real Format

E Exponential Format

I Integer Format

H Hexadecimal Format

S String Format

B Boolean Format

Formatted Output: The Print
Using Statement

Files and Unified Input/Output
Chapter 12

12-18

The identifier letter is followed by a constant number called the field
width. This number indicates the exact number of print columns the output
is to occupy and must allow for the data and overhead character positions
such as sign characters, decimal points, exponents, etc.

Some formats have additional mandatory or optional parameters that
control subfields or select editing options. One of these options is
justification to specify whether the output is to center or line up the output
field on the left or right side. Fields are commonly right-justified in reports
because it arranges them into columns with decimal points aligned in the
same position.

The abbreviations and symbols used in the syntax specifications are:

Symbol: Description: Syntax:

w Total field width 1 <= w <= 255

f Fraction field 1 <= w <= 9

j OPTIONAL justification < (left)

> (right)

^ (center)

Files and Unified Input/Output
Chapter 12

12-19

Syntax

Rw.fj

Function

Real format can be used for numbers of types REAL, INTEGER, or
BYTE. The total field width specification must include two overhead
positions for the sign and decimal point. The f specifies how many
fractional digits to the right of the decimal point to display. If the number
has more significant digits than the field allows, the undisplayed places are
used to round the displayed digits. For example:

PRINT USING “R8.2”, 12.349 Output: 12.35

The justification modes are:

Mode: Description:

< Left justify with leading sign and trailing spaces. (default if
justification mode omitted)

> Right justify with leading spaces and sign.

^ Right justify with leading spaces and trailing sign
(financial format)

Example

PROCEDURE printdemo

PRINT USING “R8.2<”,5678.123

PRINT USING “R8.2>”,12.3

PRINT USING “R8.2<”,–555.9

PRINT USING “10.2^”,–6722.4599

PRINT USING “R5.1”,9999999

END

RUN printdemo

 5678.12

 12.30

–555.90

 6722.46–

Real Format

Files and Unified Input/Output
Chapter 12

12-20

Syntax

Ew.fj

Function

Exponential format prints numbers of types REAL, INTEGER, or BYTE
in the scientific notation format using a mantissa and decimal exponent.
The syntax and behavior of this format is similar to the REAL format
except the w (field width) must allow for eight overhead positions for the
mantissa sign, decimal point, and exponent characters.

The justification modes are:

Mode: Description:

< Left justify with leading sign and trailing spaces. (This is the
default if justification mode is omitted.)

> Right justify with leading spaces and sign.

Example

PROCEDURE expodemo

PRINT USING “E12.3”,1234.567;

PRINT USING “E13.5>”,–0.001234;

PRINT USING “E12.2”,1234567

END

RUN expodemo

 1.235E+003 –1.23400E–003 1.23E+006

Exponential Format

Files and Unified Input/Output
Chapter 12

12-21

Syntax

Iwj

Function

Integer format is used to display numbers of types INTEGER or BYTE
and REAL numbers that are within range for automatic type conversion.
The w (field width) must allow for one position overhead for the sign.

The justification modes are:

Mode: Description:

< Left justify with leading sign and trailing spaces. (default if
justification mode omitted)

> Right justify with leading spaces and sign.

^ Right justify with leading spaces and trailing sign
(financial format)

Example

PROCEDURE intdemo

PRINT USING “I4<”,10

PRINT USING “I4>”,10

PRINT USING “I4^”,10

END

RUN intdemo

 10

 10

 010

Integer Format

Files and Unified Input/Output
Chapter 12

12-22

Syntax

Hwj

Function

Hexadecimal format can be used to display the internal binary
representation of any data type, using hexadecimal characters. The w (field
width) specifies the total field size. If the hexadecimal representation to
display is shorter than the field size, it is padded with spaces according to
the justification mode. If a representation of a numeric is too long, it is
truncated on the left side (see the second line in the procedure and its
matching output below). Representations of STRINGS that are not allowed
a large enough field are truncated from the right.

The number of bytes of memory used to represent data varies according to
type. The following specifications are the minimum required field widths
to display the entire hexadecimal representation for each data type:

Specification: Description:

H2 Boolean, byte (one byte)Boolean, byte (one byte)Left justify
with trailing spaces (default)

H8 Integer (four bytes)

H16 Real (eight bytes)

Hn*2 String of length n

The justification modes are:

Mode: Description:

< Left justify with trailing spaces (default)

> Right justify, leading spaces

^ Center justify

Examples

PROCEDURE hexdemo

PRINT USING “H8”,100

PRINT USING “H4”,100

PRINT USING “H16”,1.5

PRINT USING “H8,H10,H20>”,“ABC”,1,1.5

END

RUN hexdemo

00000064

0064

01C0000000000000

414243 00000001 01C0000000000000

Hexadecimal Format

Files and Unified Input/Output
Chapter 12

12-23

Syntax

Swj

Function

String format is used to display string data of any length. The w (field
width) specifies the total field size. If the string to display is shorter than
the field size, it is padded with spaces according to the justification mode.
If it is too long, it is truncated on the right side.

The justification modes are:

Mode: Description:

< Left justify (default if mode omitted)

> Right justify

^ Center justify

Examples

PROCEDURE stringdemo

PRINT USING “S9<”,“HELLO”

PRINT USING “S9>”,“HELLO”

PRINT USING “S9^”,“HELLO”

END

RUN stringdemo

HELLO

 HELLO

 HELLO

String Format

Files and Unified Input/Output
Chapter 12

12-24

Syntax

Bwj

Function

Boolean format displays boolean data. The result of the boolean expression
is converted to the strings TRUE and FALSE. The w (field width) specifies
the total field size. If the string to display is shorter than the field size, it is
padded with spaces according to the justification mode. If it is too long, it
is truncated on the right side.

The justification modes are:

Mode: Description:

< Left justify (default if mode omitted)

> Right justify

^ Center justify

Example

PROCEDURE booldemo

PRINT “IS 10<4 ?”

PRINT USING “B9>”, 10<4

PRINT “IS 4<10 ?”

PRINT USING “B9”, 4<10

END

RUN booldemo

IS 10<4 ?

 FALSE

IS 4<10 ?

TRUE

Boolean Format

Files and Unified Input/Output
Chapter 12

12-25

Function

Control specifications are useful for horizontal formatting of the output
line. They are not matched with items in the output list and can be used
freely. The control formats are:

Mode: Description:

Tn Tab to column n

Xn Space n columns

’str’ Print constant string. The string must not include single or
double quotes, backslash or carriage return characters.

ATTENTION: Control specifications at the end of the format
specification list are not processed if all output items have
been exhausted.

Example

PROCEDURE demo

PRINT USING “’addr’,X2,H4,X2,’data’,X2,H2”,1000,100

END

RUN demo

addr 03E8 data 64

Function

Many times, identical sequences of specifications are repeated in format
specification lists. The repeated groups can be enclosed in parentheses and
preceded by a repeat count. These repeat groups can be nested.

Examples

“2(X2,R10.5)” is the same as “X2,R10.5,X2,R10.5”

“2(I2,2(X1,S4))” is the same as “I2,X1,S4,X1,S4,I2,X1,S4,X1,S4”

Control Specifications

Repeat Groups

Appendix

A

A-1

Sample Programs

This appendix contains 24 example procedures that can be used
immediately or studied and adapted for use within user procedures. The
procedures are:

Name: Function: Page:

Fibonacci Computes first eleven Fibonacci numbers A-2

Fractions Finds rational approximations for real values A-2

Prinbi Prints integer value in binary A-3

Hanoi Moves n discs in Tower of Hanoi game A-3

Roman Prints integer value as a Roman numeral A-4

Eightqueens Finds the arrangement that eight queens may be
placed on a chess board without conflict

A-5

Electric Prints pictorial representation of the electrical field
around charged points

A-6

Structst Example of intermixed array and record structures A-8

Wordlook Displays word at given address by use of
subroutines: Prinbyte: prints byte as binary

A-9

Qsortl Example quicksort with use of subroutine:
Exchange: exchanges values of two variables

A-10

Sortest Procedure to test Qsortl with use of subroutine:
Prin: prints an array of 1000 integers

A-11

Upadd, Upsub
Uprint, Upinput
Uptoreal, Ultra

Demonstrates multiple-precision arithmetic using
five integers to represent a forty decimal digit
number, with eight fractional places

A-12

Patch Examines and patches any byte of a disk file using
the subroutine: PrintASCII.

A-14

MakeProc Generates an OS-9 command file to apply
a command

A-16

SysCall Subroutine to use OS-9 system calls A-19

Sample Programs
Appendix A

A-2

PROCEDURE fibonacci

 REM computes the first eleven Fibonacci numbers

 DIM x,y,i,temp:INTEGER

 x:=0 \y:=0

 FOR i=0 TO 10

 temp:=y

 IF i<>0 THEN

 y:=y+x

 ELSE y:=1

 ENDIF

 x:=temp

 PRINT i,y

 NEXT i

PROCEDURE fractions

 REM by T.F. Ritter

 REM finds increasingly–close rational approximations

 REM to the desired real value

 DIM m:INTEGER

 desired:=PI

 last:=0

 FOR m=1 TO 30000

 n:=INT(.5+m*desired)

 trial:=n/m

 IF ABS(trial–desired)<ABS(last–desired) THEN

 PRINT n; “/”; m; “ = ”; trial,

 PRINT “difference = ”; trial–desired;

 PRINT

 last:=trial

 ENDIF

 NEXT m

Sample Programs
Appendix A

A-3

PROCEDURE prinbi

 REM by T.F. Ritter

 REM prints the integer parameter value in binary

 PARAM n:INTEGER

 DIM i:INTEGER

 FOR i=31 TO 0 STEP –1

 IF n<0 THEN

 PRINT “1”;

 ELSE PRINT ”0”;

 ENDIF

 n:=n+n

 NEXT i

 PRINT

 END

PROCEDURE hanoi

 REM by T.F. Ritter

 REM move n discs in Tower of Hanoi game

 REM See BYTE Magazine, Oct 1980, pg. 279

 PARAM n:INTEGER; from,to_,other:STRING[8]

 IF n=1 THEN

 PRINT “move #”; n; “ from ”; from; “ to ”; to_

 ELSE

 RUN hanoi(n–1,from,other,to_)

 PRINT “move #”; n; “ from ”; from; “ to ”; to_

 RUN hanoi(n–1,other,to_,from)

 ENDIF

 END

Sample Programs
Appendix A

A-4

PROCEDURE roman

 REM prints integer parameter as Roman Numeral

 PARAM x:INTEGER

 DIM value,svalu,i:INTEGER

 DIM char,subs:STRING

 char:=“MDCLXVI”

 subs:=“CCXXII ”

 DATA 1000,100,500,100,100,10,50,10,10,1,5,1,1,0

 FOR i=1 TO 7

 READ value

 READ svalu

 WHILE x>=value DO

 PRINT MID$(char,i,1);

 x:=x–value

 ENDWHILE

 IF x>=value–svalu THEN

 PRINT MID$(subs,i,1); MID$(char,i,1);

 x:=x–value+svalu

 ENDIF

 NEXT i

 END

Sample Programs
Appendix A

A-5

PROCEDURE eightqueens

 REM originally by N. Wirth; here re–coded from Pascal

 REM finds the arrangements by which eight queens

 REM can be placed on a chess board without conflict

 DIM n,k,x(8):INTEGER

 DIM col(8),up(15),down(15):BOOLEAN

 BASE 0

 (* initialize empty board *)

 n:=0

 FOR k:=0 TO 7 \col(k):=TRUE \NEXT k

 FOR k:=0 TO 14 \up(k):=TRUE \down(k):=TRUE \NEXT k

 RUN generate(n,x,col,up,down)

 END

PROCEDURE generate

 PARAM n,x(8):INTEGER

 PARAM col(8),up(15),down(15):BOOLEAN

 DIM h,k:INTEGER \h:=0

 BASE 0

 REPEAT

 IF col(h) AND up(n–h+7) AND down(n+h) THEN

 (* set queen on square [n,h] *)

 x(n):=h

 col(h):=FALSE \up(n–h+7):=FALSE \down(n+h) := FALSE

 n:=n+1

 IF n=8 THEN

 (* board full; print configuration *)

 FOR k=0 TO 7

 PRINT x(k); “ ”;

 NEXT k

 PRINT

 ELSE RUN generate(n,x,col,up,down)

 ENDIF

 (* remove queen from square [n,h] *)

 n:=n–1

 col(h):=TRUE \up(n–h+7):=TRUE \down(n+h):=TRUE

 ENDIF

 h:=h+1

 UNTIL h=8

 END

Sample Programs
Appendix A

A-6

PROCEDURE electric

 REM re–programmed from “ELECTRIC”

 REM by Dwyer and Critchfield

 REM Basic and the Personal Computer (Addison–Wesley, 1978)

 REM provides a pictorial representation of the

 REM resultant electrical field around charged points

 DIM a(10),b(10),c(10)

 DIM x,y,i,j:INTEGER

 xscale:=50./78.

 yscale:=50./32.

 INPUT “How many charges do you have? ”,n

 PRINT “The field of view is 0–50,0–50 (x,y)”

 FOR i=1 TO n

 PRINT “type in the x and y positions of charge ”;

 PRINT i;

 INPUT a(i),b(i)

 NEXT i

 PRINT “type in the size of each charge:”

 FOR i=1 TO n

 PRINT “charge ”; i;

 INPUT c(i)

 NEXT i

 REM visit each screen position

 FOR y=32 TO 0 STEP –1

 FOR x=0 TO 78

 REM compute field strength into v

 GOSUB 10

 z:=v*50.

 REM map z to valid ASCII in b$

 GOSUB 20

 REM print char (proportional to field)

 PRINT b$;

 NEXT x

 PRINT

 NEXT y

 END

(continued on next page)

Sample Programs
Appendix A

A-7

electric continued

10 v=1.

 FOR i=1 TO n

 r:=SQRT(SQ(xscale*x–a(i))+SQ(yscale*y–b(i)))

 EXITIF r=.0 THEN

 v:=99999.

 ENDEXIT

 v:=v+c(i)/r

 NEXT i

 RETURN

20 IF z<32 THEN b$:=“ ”

 ELSE

 IF z>57 THEN z:=z+8

 ENDIF

 IF z>90 THEN b$:=“*”

 ELSE

 IF z>INT(z)+.5 THEN b$:=“ ”

 ELSE b$:=CHR$(z)

 ENDIF

 ENDIF

 ENDIF

 RETURN

Sample Programs
Appendix A

A-8

PROCEDURE structst

 REM example of intermixed array and record structures

 REM note that structure d contains 200 real elements

 TYPE a=one(2):REAL

 TYPE b=two(10):a

 TYPE c=three(10):b

 DIM d,e:c

 FOR i=1 TO 10

 FOR j=1 TO 10

 FOR k=1 TO 2

 PRINT d.three(i).two(j).one(k)

 d.three(i).two(j).one(k):=0.

 PRINT e.three(i).two(j).one(k)

 PRINT

 NEXT k

 NEXT j

 NEXT i

 REM this is a complete structure assignment

 e:=d

 FOR i=1 TO 10

 FOR j=1 TO 10

 FOR k=1 TO 2

 PRINT e.three(i).two(j).one(k);

 NEXT k

 PRINT

 NEXT j

 NEXT i

 END

Sample Programs
Appendix A

A-9

PROCEDURE wordlook

 REM Display a word at a user specified address

 REM By Andy Nicholson

 DIM address, datum: INTEGER

 INPUT “Enter word address: ”;address

 datum := PEEK(address)

 RUN prinbyte(datum)

 datum := PEEK(address + 1)

 RUN prinbyte(datum)

 datum := PEEK(address + 2)

 RUN prinbyte(datum)

 datum := PEEK(address + 3)

 RUN prinbyte(datum)

 END

PROCEDURE prinbyte

 REM print a byte as binary

 PARAM n: INTEGER

 DIM i: INTEGER

 n:= n*16777216

 FOR i = 7 TO 0 STEP –1

 IF n < 0 THEN

 PRINT “1”

 ELSE

 PRINT ”0”

 ENDIF

 n:= n + 1

 NEXT i

 PRINT

 END

Sample Programs
Appendix A

A-10

PROCEDURE qsort1

 REM quicksort, by T.F. Ritter

 PARAM bot,top,d(1000):INTEGER

 DIM n,m:INTEGER; btemp:BOOLEAN

 n:=bot

 m:=top

 LOOP \REM each element gets the once over

 REPEAT \REM this is a post–inc instruction

 btemp:=d(n)<d(top)

 n:=n+1

 UNTIL NOT (btemp)

 n:=n–1 \REM point at the tested element

 EXITIF n=m THEN

 ENDEXIT

 REPEAT \REM this is a post–dec instruction

 m:=m–1

 UNTIL d(m)<=d(top) OR m=n

 EXITIF n=m THEN

 ENDEXIT

 RUN exchange(d(m),d(n))

 n:=n+1 \REM prepare for post–inc

 EXITIF n=m THEN

 ENDEXIT

 ENDLOOP

 IF n<>top THEN

 IF d(n)<>d(top) THEN

 RUN exchange(d(n),d(top))

 ENDIF

 ENDIF

 IF bot<n–1 THEN

 RUN qsort1(bot,n–1,d)

 ENDIF

 IF n+1<top THEN

 RUN qsort1(n+1,top,d)

 ENDIF

 END

(continued on next page)

Sample Programs
Appendix A

A-11

qsort1 continued

PROCEDURE exchange

 PARAM a,b:INTEGER

 DIM temp:INTEGER

 temp:=a

 a:=b

 b:=temp

 END

PROCEDURE prin

 PARAM n,m,d(1000):INTEGER

 DIM i:INTEGER

 FOR i=n TO m

 PRINT d(i);

 NEXT i

 PRINT

 END

PROCEDURE sortest

 REM This procedure is used to test Quicksort

 REM It fills the array “d” with randomly generated

 REM numbers and sorts them.

 DIM i,d(1000):INTEGER

 FOR i=1 TO 1000

 d(i):=INT(RND(100))

 NEXT i

 RUN prin(1,1000,d)

 RUN qsort1(1,1000,d)

 RUN prin(1,1000,d)

 END

Sample Programs
Appendix A

A-12

The following procedures demonstrate multiple-precision arithmetic, in
this case using five integers to represent a 40 decimal digit number, with
eight fractional places.

PROCEDURE upadd

 REM a+b=>c:five_integer_number (T.F. Ritter)

 PARAM a(5),b(5),c(5):INTEGER

 DIM i,carry:INTEGER

 carry:=0

 FOR i=5 TO 1 STEP –1

 c(i):=a(i)+b(i)+carry

 IF c(i)>=100000000 THEN

 c(i):=c(i)–100000000

 carry:=1

 ELSE carry:=0

 ENDIF

 NEXT i

PROCEDURE upsub

 PARAM a(5),b(5),c(5):INTEGER

 DIM i,borrow:INTEGER

 borrow:=0

 FOR i=5 TO 1 STEP –1

 c(i):=a(i)–b(i)–borrow

 IF c(i)<0 THEN

 c(i):=c(i)+100000000

 borrow:=1

 ELSE borrow:=0

 ENDIF

 NEXT i

PROCEDURE uprint

 PARAM a(5):INTEGER

 DIM i:INTEGER; s:STRING

 FOR i=1 TO 5

 IF i=5 THEN PRINT “.”;

 ENDIF

 s:=STR$(a(i))

 PRINT RIGHT$(“00000000”+s,8);

 NEXT i

Sample Programs
Appendix A

A-13

PROCEDURE upinput

 PARAM a(5):INTEGER

 DIM n,i:INTEGER

 DIM b$:STRING[64]

 INPUT “input ultra–precision number: ”,b$

 b$:=TRIM$(b$)

 n:=SUBSTR(“.”,b$)

 IF n<>0 THEN

 a(5):=VAL(MID$(b$+“00000000”,n+1,8))

 b$:=LEFT$(b$,n–1)

 ELSE a(5):=0

 ENDIF

 b$:=“00000000000000000000000000000000”+b$

 n:=1+LEN(b$)

 FOR i=4 TO 1 STEP –1

 n:=n–8

 a(i):=VAL(MID$(b$,n,8))

 NEXT i

PROCEDURE uptoreal

 PARAM a(5):INTEGER; b:REAL

 DIM i:INTEGER

 b:=a(1)

 FOR i=2 TO 4

 b:=b*100000000

 b:=b+a(i)

 NEXT i

 b:=b+a(5)*.00000001

PROCEDURE ultra

 DIM one(5),two(5),out(5):INTEGER; r:REAL

 RUN upinput(one)

 RUN upinput(two)

 PRINT “add”

 RUN upadd(one,two,out)

 RUN uprint(out)

 PRINT

 RUN uptoreal(out,r)

 PRINT r

 PRINT “sub”

 RUN upsub(one,two,out)

 RUN uprint(out)

 PRINT

 RUN uptoreal(out,r)

 PRINT r

Sample Programs
Appendix A

A-14

PROCEDURE Patch

 (* Program to examine and patch any byte of a disk file *)

 (* Written by L. Crane *)

 DIM buffer(256):BYTE

 DIM path,offset,modloc:INTEGER; loc:REAL

 DIM rewrite:STRING

 INPUT “pathlist? ”,rewrite

 OPEN #path,rewrite:UPDATE

 LOOP

 INPUT “sector number? ”,rewrite

 EXITIF rewrite=“” THEN ENDEXIT

 loc=VAL(rewrite)*256

 SEEK #path,loc

 GET #path,buffer

 RUN DumpBuffer(loc,buffer)

 LOOP

 INPUT “change (sector offset)? ”,rewrite

 EXITIF rewrite=“” THEN

 RUN DumpBuffer(loc,buffer)

 ENDEXIT

 EXITIF rewrite=“S” OR rewrite=“s” THEN ENDEXIT

 offset=VAL(rewrite)+1

 LOOP

 EXITIF offset>256 THEN ENDEXIT

 modloc=loc+offset–1

 PRINT USING “h4,’ – ’,h2”,modloc,buffer(offset);

 INPUT ”:“,rewrite

 EXITIF rewrite=”“ THEN ENDEXIT

 IF rewrite<>” “ THEN

 buffer(offset)=VAL(rewrite)

 ENDIF

 offset=offset+1

 ENDLOOP

 ENDLOOP

 INPUT ”rewrite sector? “,rewrite

 IF LEFT$(rewrite,1)=”Y“ OR LEFT$(rewrite,1)=”y“ THEN

 SEEK #path,loc

 PUT #path,buffer

 ENDIF

 ENDLOOP

 CLOSE #path

 BYE

(continued on next page)

Sample Programs
Appendix A

A-15

patch continued

PROCEDURE DumpBuffer

 (* Called by PATCH *)

 TYPE buffer=char(4):INTEGER

 PARAM loc:REAL; line(16):buffer

 DIM i,j:INTEGER

 WHILE loc>65535. DO

 loc=loc–65536.

 ENDWHILE

 FOR j=1 TO 16

 PRINT USING “h4”,FIX(INT(loc))+(j–1)*16;

 PRINT ”:“;

 FOR i=1 TO 4

 PRINT USING ”X1,H8”,line(j).char(i);

 NEXT i

 RUN printascii(line(j))

 PRINT

 NEXT j

PROCEDURE PrintASCII

 TYPE buffer=char(16):BYTE

 PARAM line:buffer

 DIM ascii:STRING; nextchar:BYTE; i:INTEGER

 ascii=“”

 FOR i=1 TO 16

 nextchar=line.char(i)

 IF nextchar>127 THEN

 nextchar=nextchar–128

 ENDIF

 IF nextchar<32 OR nextchar>125 THEN

 ascii=ascii+“ ”

 ELSE

 ascii=ascii+CHR$(nextchar)

 ENDIF

 NEXT i

 PRINT “ ”; ascii;

Sample Programs
Appendix A

A-16

 PROCEDURE MakeProc

 (* Generates an OS–9 command file to apply a command *)

 (* Such as copy, del, etc., to all files in a directory *)

 (* or directory system. Author: L. Crane *)

 DIM DirPath,ProcPath,i,j,k:INTEGER

 DIM CopyAll,CopyFile:BOOLEAN

 DIM ProcName,FileName,ReInput,ReOutput,response:STRING

 DIM SrcDir,DestDir,DirLine:STRING[80]

 DIM Function,Options:STRING[60]

 DIM ProcLine:STRING[160]

 ProcName=“CopyDir”

 Function=“Copy”

 Options=“–b=32k”

 REPEAT

 PRINT “Proc name (”; ProcName; “)”;

 INPUT response

 IF response<>“” THEN

 ProcName=TRIM$(response)

 ENDIF

 ON ERROR GOTO 100

 SHELL “del ”+ProcName

100 ON ERROR

 INPUT “Source Directory? ”,SrcDir

 SrcDir=TRIM$(SrcDir)

 ON ERROR GOTO 200

 SHELL “del procmaker...dir”

200 ON ERROR

 SHELL “dir –u ”+SrcDir+“ >procmaker...dir”

 OPEN #DirPath,“procmaker...dir”:READ

 CREATE #ProcPath,ProcName:WRITE

 PRINT “Function (”; Function; “)”;

 INPUT response

 IF response<>“” THEN

 Function=TRIM$(response)

 ENDIF

(continued on next page)

Sample Programs
Appendix A

A-17

makeproc continued

 INPUT “Redirect Input? ”,response

 IF response=“y” OR response=“Y” THEN

 ReInput=“<” \ ELSE \ReInput=“”

 ENDIF

 INPUT “Redirect Output? ”,response

 IF response=“y” OR response=“Y” THEN

 ReOutput=“>” \ ELSE \ReOutput=“”

 ENDIF

 PRINT “Options (”; Options; “)”;

 INPUT response

 IF response<>“” THEN

 Options=TRIM$(response)

 ENDIF

 INPUT “Destination Directory? ”,DestDir

 DestDir=TRIM$(DestDir)

 WRITE #ProcPath,“t”

 WRITE #ProcPath,“TMode .1 –pause”

 READ #DirPath,DirLine

 INPUT “Use all files? ”,response

 CopyAll=response=“y” OR response=“Y”

 WHILE NOT(EOF(#DirPath)) DO

 READ #DirPath,DirLine

 i=LEN(TRIM$(DirLine))

 IF i>0 THEN

 j=1

 REPEAT

 k=j

 WHILE j<=i AND MID$(DirLine,j,1)<>“ ” DO

 j=j+1

 ENDWHILE

 FileName=MID$(DirLine,k,j–k)

(continued on next page)

Sample Programs
Appendix A

A-18

makeproc continued

 IF NOT(CopyAll) THEN

 PRINT “Use ”; FileName;

 INPUT response

 CopyFile=response=“y” OR response=“Y”

 ENDIF

 IF CopyAll OR CopyFile THEN

 ProcLine=Function+“ ”+ReInput+SrcDir+“/”+FileName

 IF DestDir<>“” THEN

 ProcLine=ProcLine+“ ”+ReOutput+DestDir+“/”+FileName

 ENDIF

 ProcLine=ProcLine+“ ”+Options

 WRITE #ProcPath,ProcLine

 ENDIF

 WHILE j<i AND MID$(DirLine,j,1)=“ ” DO

 j=j+1

 ENDWHILE

 UNTIL j>=i

 ENDIF

 ENDWHILE

 WRITE #ProcPath,“TMode .1 pause”

 WRITE #ProcPath,“Dir e ”+SrcDir

 IF DestDir<>“” THEN

 WRITE #ProcPath,“Dir e ”+DestDir

 ENDIF

 CLOSE #DirPath

 CLOSE #ProcPath

 SHELL “del procmaker...dir”

 PRINT

 INPUT “Another ? ”,response

 UNTIL response<>“Y” AND response<>“y”

 IF response<>“B” AND response<>“b” THEN

 BYE

 ENDIF

Sample Programs
Appendix A

A-19

*!––!

*! SysCall – a subroutine for Basic09/68000

*!

*! Called by: RUN SysCall(Code,Regs)

*!

*! Code – An integer contained the OS9 function code

*! Regs – Register pack, must be at least 48 bytes for

*! registers D0 thru A4

*!

 use <oskdefs.d>

*! Definition of Parameters on Stack

 org 0

Return do.l 1 Return Address

Length1 do.l 1 Length of first parameter

Param2 do.l 1 Address of second parameter

Length2 do.l 1 Length of second parameter

 psect

SysCall,(Sbrtn<<8)!Objct,(ReEnt<<8)!1,0,0,SysCall

SysCall cmpi.l #2,d0 check parameter count

 bne.s ParamErr branch if error

 cmpi.l #4,Length1(a7) is first parameter integer?

 bne.s ParamErr branch if not

 cmpi.l #52,Length2(a7) 48 bytes of registers?

 blo.s ParamErr branch if not

*! Now put the model on the stack

 move.w #Modllen/2,d2 number of words for dbra

 lea Model+Modllen(pc),a0 get address of model

 bra.s SysC02 branch into loop

SysC01 move.w –(a0),–(a7) move a word

SysC02 dbra d2,SysC01 continue if not done

 move.l d1,a0 point to function code

 move.w 2(a0),2(a7) set function code

*! Get the registers

 movea.l Param2+Modllen(a7),a5 get address of parameter

 movem.l (a5)+,d0–d7/a0–a4 get register

 jsr (a7) call function

 movem.l d0–d7/a0–a4,–(a5)

 lea.l Modllen(a7),a7 clear stack

 rts

ParamErr move.w #E$Param,d1 get error code

 ori #Carry,ccr set carry

 rts

Model os9 F$Fork model system call to put on stack

 rts

Modllen equ *–Model

 ends

Appendix

B

B-1

Quick Reference

$ BYE CHD CHX
DIGITS DIR E EDIT
KILL LIST LOAD MEM
PACK RENAME RUN SAVE

+ – <cr> c
d l r s
+* –* <line #> c*
d* l* r* s*
<space> q

$ BREAK CONT DEG
DIR LET LIST PRINT
Q RAD STATE STEP
TROFF TRON

System Mode Commands

Edit Mode Commands

Debug Mode Commands

Quick Reference
Appendix B

B-2

ABS ACS ADDR AND
ASC ASN ATN BASE
BOOLEAN BYE BYTE CHAIN
CHD CHR$ CHX CLOSE
COS CREATE DATA DATE$
DEG DELETE DIM DIGITS
DIR DO ELSE END
ENDEXIT ENDIF ENDLOOP ENDWHILE
EOF ERR ERROR EXEC
EXITIF EXP FALSE FIX
FLOAT FOR GET GOSUB
GOTO IF INPUT INT
INTEGER KILL LAND LEFT$
LEN LET LNOT LOG
LOG10 LOOP LOR LXOR
MID$ MOD NEXT NOT
ON OPEN OR PARAM
PAUSE PEEK PI POKE
POS PRINT PROCEDURE PUT
RAD READ REAL REM
REPEAT RESTORE RETURN RIGHT$
RND RUN SEEK SGN
SHELL SIN SIZE SQ
SQR SQRT STEP STOP
STR$ STRING SUBSTR TAB
TAN THEN TO TRIM$
TROFF TRON TRUE TYPE
UNTIL UPDATE USING VAL
WHILE WRITE XOR

BASE 0 BASE 1 BYE CHAIN
CHD CHX CLOSE CREATE
DATA DEG DELETE DIM
ELSE END ENDEXIT ENDIF
ENDLOOP ENDWHILE ERROR EXITIF/THE
N FOR/TO/ STEP GET
GOSUB GOTO IF/THEN INPUT
KILL LET LOOP NEXT
ON ERROR GOTO ON/GOSUB ON/GOTO
OPEN PARAM PAUSE POKE
PRINT PUT RAD READ
REM REPEAT RESTORE RETURN
RUN SEEK SHELL STOP
TROFF TRON TYPE UNTIL
WHILE/DO WRITE

Basic Reserved Words

Basic Statements

Quick Reference
Appendix B

B-3

ACS (x) ASN (x) ATN (x) COS (x)
EXP (x) LOG (x) LOG10 (x) PI
SIN (x) TAN (x)

ABS (x) FIX (x) FLOAT (m) INT (x)
LAND (m,n) LNOT (m,n) LOR (m,n) LXOR (m,n)
MOD (m,n) RND (x) SGN (x) SQ (x)
SQR (x) SQRT (x)

ASC (char$) CHR$ (m) DATE$ LEFT$
(str$,m)
LEN (str$) MID$ (str$,m,n) RIGHT$ (str$,m) STR$ (x)
SUBSTR(st1$,st2$) TRIM$ (str$) VAL(str$)

ADDR (var) EOF (#path) ERR FALSE
FILSIZ(#<path>) INKEY(#<path>) PEEK (addr) POS
SIZE (var) TAB (m) TRUE

highest NOT –(neg)
 ^ **

 * /
 + –

> < <> = >= <=
AND

lowest OR XOR

Transcendental Functions

Numeric Functions

String Functions

Miscellaneous Functions

Operator Precedence

Quick Reference
Appendix B

B-4

Notes

Appendix

C

C-1

Basic Error Codes

10 – Unrecognized Symbol
11 – Excessive Verbage (too many keywords or symbols)
12 – Illegal Statement Construction
13 – I-code Overflow (need more workspace memory)
14 – Illegal Channel Reference (bad path number given)
15 – Illegal Mode (Read/Write/Update/Dir only)
16 – Illegal Number
17 – Illegal Prefix
18 – Illegal Operand
19 – Illegal Operator

20 – Illegal Record Field Name
21 – Illegal Dimension
22 – Illegal Literal
23 – Illegal Relational
24 – Illegal Type Suffix
25 – Too-Large Dimension
26 – Too-Large Line Number
27 – Missing Assignment Statement
28 – Missing Path Number
29 – Missing Comma

30 – Missing Dimension
31 – Missing DO Statement
32 – Memory Full (need more workspace memory)
33 – Missing GOTO
34 – Missing Left Parenthesis
35 – Missing Line Reference
36 – Missing Operand
37 – Missing Right Parenthesis
38 – Missing THEN statement
39 – Missing TO

40 – Missing Variable Reference
41 – No Ending Quote
42 – Too Many Subscripts
43 – Unknown Procedure
44 – Multiply-Defined Procedure
45 – Divide by Zero
46 – Operand Type Mismatch
47 – String Stack Overflow
48 – Unimplemented Routine
49 – Undefined Variable

Basic Error Codes
Appendix C

C-2

50 – Floating Overflow
51 – Line with Compiler Error
52 – Value out of Range for Destination
53 – Subroutine Stack Overflow
54 – Subroutine Stack Underflow
55 – Subscript out of Range
56 – Parameter Error
57 – System Stack Overflow
58 – I/O Type Mismatch
59 – I/O Numeric Input Format Bad

60 – I/O Conversion: Number out of Range
61 – Illegal Input Format
62 – I/O Format Repeat Error
63 – I/O Format Syntax Error
64 – Illegal Path Number
65 – Wrong Number of Subscripts
66 – Non-Record-Type Operand
67 – Illegal Argument
68 – Illegal Control Structure
69 – Unmatched Control Structure

70 – Illegal FOR Variable
71 – Illegal Expression Type
72 – Illegal Declarative Statement
73 – Array Size Overflow
74 – Undefined Line Number
75 – Multiply-Defined Line Number
76 – Multiply-Defined Variable
77 – Illegal Input Variable
78 – Seek Out of Range
79 – Missing Data Statement
80 – Print Buffer Overflow

Error codes above 80 are those used by OS-9 or other external programs.
Consult Using Personal OS-9 or Using Professional OS-9 for a list of error
codes and explanations.

Basic Error Codes
Appendix C

C-3

Notes

Appendix

D

D-1

RUNB

Runb is the BASIC run-time package. It is similar to BASIC with the
following exceptions: Runb is about half the size of BASIC and no file
editing or debugging can be done. The main purpose of Runb is to save
space and to execute packed modules. It should be noted that Runb only
executes packed modules. Another feature of Runb is that [Ctrl-C] and
[Ctrl-E] can be trapped by ON ERROR GOTO where BASIC cannot.

When the name of a packed module is typed at the OS-9 prompt, the shell
determines that the module is packed BASIC I-code. The shell then loads
and forks Runb, and Runb links to and executes the named program. To
run packed modules in this way, Runb must be in the commands directory.

Important: Packed modules can be executed without Runb if they are still
within the workspace, but BASIC will have to be used and more space will
be required.

RUNB
Appendix D

D-2

Notes

Index

I–I

Symbols
$, 5-1, 5-3, 8-1, 8-2

A
access modes

DIR, 3-7
EXEC, 3-6, 3-7
READ, 3-7
UPDATE, 3-6, 3-7
WRITE, 3-6

array, 9-1
arrays, 3-1, 4-3, 9-9

declaring, 11-28
assignment statement, 4-3
assignment statements, 11-2

LET, 11-2
POKE, 11-3

B
BASE 0/BASE 1, 11-25
BOOLEAN, 9-2, 9-5

defined, 2-8
boolean format, 12-24
BREAK, 8-1, 8-2
breakpoint, 8-2
BYE, 1-2, 5-1, 5-4, 11-22
BYTE, 4-2, 9-2

defined, 2-8

C
CHAIN, 11-19
CHD/CHX, 5-1, 5-4, 11-24
CLOSE, 3-6, 12-8
command interpreter, 5-1, 5-3
comment statements, 11-26
conditional control, 2-12
constants, 9-6

BOOLEAN, 2-9
boolean, 9-7
defined, 2-8
numeric, 2-9, 9-6
STRING, 2-10
strings, 9-7

CONT, 8-1, 8-3
control specifications, 12-25

control statements, 11-4
FOR..NEXT, 11-5
GOSUB, 11-11
GOTO, 11-10
IF..THEN..ELSE, 11-4
LOOP..ENDLOOP, 11-9
ON ERROR GOTO, 11-13
ON GOSUB, 11-12
ON GOTO, 11-12
REPEAT..UNTIL, 11-8
WHILE..DO, 11-7

CREATE, 3-6, 3-7, 12-7
creating procedures, edit mode, 2-1,
16-1, 6-1
current working procedure, 5-1, 5-5

D
DATA, 3-3
data records

reading, 12-13
writing, 12-13

data structures, 4-3, 9-1
data types, 2-8, 9-1, 9-2

BOOLEAN, 9-2, 9-5
BYTE, 9-2
complex, 9-9
conversion, 9-6
defining, 11-30
INTEGER, 9-2, 9-3
REAL, 9-2, 9-3
STRING, 9-2

DATA/READ/RESTORE, 12-16
debug commands

$, 8-1, 8-2
BREAK, 8-1, 8-2
CONT, 8-1, 8-3
DEG/RAD, 8-1, 8-3
DIR, 8-1, 8-4
LET, 8-1, 8-4
LIST, 8-1, 8-4
PRINT, 8-1, 8-5
Q, 8-1, 8-5
STATE, 8-1, 8-5
STEP, 8-6
TRON/TROFF, 8-6

Index

I–II

debug mode, 1-2, 16-1, 8-1
entering, 8-1

declaration statements, 11-27
DIM, 11-27
PARAM, 11-27, 11-29
TYPE, 11-27, 11-30

DEG/RAD, 8-1, 8-3, 11-24
DELETE, 12-9
delimiters, 6-6
DIGITS, 5-1, 5-5, 11-22
DIM, 2-4, 3-1, 11-27
DIR, 1-2, 1-3, 3-7, 5-1, 5-5, 8-1, 8-4
directories, changing, 5-4, 11-24
display directories, 1-2, 1-3, 5-5
display memory, 1-2, 1-4, 5-8

E
E, 1-3, 2-1
E/EDIT, 5-1
EDIT, 1-2, 1-3, 5-2
edit command

 , 2-18
c, 2-18
d, , 2-18

edit commands, 2-18, 6-1, 6-5
 , 2-18, 6-1, 6-3
 , 2-18, 6-1, 6-3
+, 2-18, 6-1, 6-4
+ , 6-4
+*, 6-4
–, 2-18, 6-1
– , 6-4
–*, 2-18, 6-4
l, , 2-18
r, , ,, , 2-18
s, , 2-18
c, 6-1
c , , 6-6
d, 6-1
d+*, 6-5
d–*, 6-5
l, 6-1
l , , 6-5
q, 2-18, 6-1
r, 6-1, 6-3

r*, 6-3
s, 6-1
s , , 6-6

edit mode, 1-2, 2-1, 2-19, 16-1, 6-1
command, character, 2-2
entering, 1-2, 1-3, 5-2, 6-1

edit pointer, 6-4
moving, 6-1

EDIT/E, 5-6, 6-1
editing

string oriented, 6-4
using line numbers, 6-3

editing procedures, 2-18
END, 2-3, 11-21
endless loop, 2-13
ERROR, 11-23
errors, generating, 11-23
EXEC, 3-6, 3-7
execution mode, 1-2, 16-1, 7-1

enter, 5-2
entering, 5-10, 7-2

execution statements, 11-15
BYE, 11-22
CHAIN, 11-19
CHD/CHX, 11-24
DEG/RAD, 11-24
DIGITS, 11-22
END, 11-21
ERROR, 11-23
KILL, 11-18
PAUSE, 11-23
RUN, 11-15
SHELL, 11-20
STOP, 11-21
TRON/TROFF, 11-25

execution statemetns,
BASE0/BASE1, 11-25
exit BASIC, 11-22
EXITIF..ENDEXIT, 11-9
EXITIF..THEN, 2-17
exiting BASIC, 1-2, 5-4
exponential format, 12-20
expression stack, 10-1
expressions, evaluating, 10-1
external files, 3-4

Index

I–III

F
field width, 3-17
file name, defined, 5-2
files

closing, 3-6
creating, 3-6
loading, 5-8

FOR..NEXT, 2-13, 4-2, 11-5
STEP, 2-14

format
boolean, 12-24
exponential, 12-20
hexadecimal, 12-22
integer, 12-21
real, 12-19
string, 12-23

formated output, 12-17
formatted output, 3-17
fraction field, 3-18
functions, 10-4

G
GET, 3-5
GET/PUT, 12-13
GOSUB, 3-10, 11-11
GOTO, 2-24, 11-10

H
hexadecimal format, 12-22

I
I–code, 4-1, 6-2
I–code address, listing, 5-7
I–code addresses, 2-4
IF..THEN..ELSE, 11-4
INPUT, 2-2, 12-3
INTEGER, 4-2, 4-3, 9-2, 9-3

defined, 2-8
integer format, 12-21

K
KILL, 1-2, 1-4, 5-1, 5-6, 11-18

L
l*, 6-5

LET, 2-5, 4-3, 8-1, 8-4, 11-2
line numbers, 2-24, 11-2

minimizing, 4-3
lines

deleting, 2-18, 6-1, 6-5
finding, 6-1
inserting, 2-18, 6-1, 6-4
listing, 6-1, 6-5
renumbering, 2-18, 6-1
replacing, 6-1

LIST, 5-1, 5-7, 8-1, 8-4
LOAD, 1-2, 1-4, 5-1, 5-8
load files, 1-2, 1-4
LOOP..ENDLOOP, 2-17
LOOP..ENDLOOP , 11-9
looping

defined, 2-13
endless, 2-13
LOOP..ENDLOOP, 2-17
nesting, 2-13
REPEAT..UNTIL, 2-16
speed, 4-2
the FOR..NEXT structure, 2-13
the LOOP..ENDLOOP structure,
2-13
the REPEAT..UNTIL structure,
2-13
the WHILE..DO structure, 2-13
WHILE..DO, 2-15

loops, 11-6
nesting, 11-1

M
matrix, 3-1, 9-9
MEM, 1-2, 1-4, 5-1, 5-8
memory

display, 1-2, 1-4, 5-8
re, 5-8
request, 1-2, 1-4

mode
debug, 1-2, 16-1
edit, 1-2, 16-1
execution, 1-2, 16-1
system, 1-2, 16-1, 5-1

Index

I–IV

modes
debug, 8-1
execution, 7-1

N
nested loops, limitations, 11-1
numeric data types, 4-2

O
ON ERROR GOTO, 3-9, 11-13
ON GOSUB, 11-12
ON GOTO, 11-12
OPEN, 3-7, 12-6
operators, 2-10, 10-2

precedence, 10-3
precedence of, 2-10

OS–9 command line, processing,
11-19
OS–9 commands, processing, 5-3
output

formatted, 3-17, 12-17
formatting numerical, 5-5

output editing directives, 3-17

P
PACK, 1-2, 1-5, 4-3, 5-1, 5-9
PARAM, 3-12, 11-27, 11-29
parameter passing, 3-12
parameters

command line, 3-14
optional, 3-14
passing, 7-1, 11-15
passing by reference, 9-8
passing by value, 9-8

path
closing, 12-8
defined, 12-2
opening, 12-6

path number, 12-2
PAUSE, 11-23
POKE, 11-3
precedence

for operators, 10-3
of operators, 2-10

PRINT, 2-2, 8-1, 8-5, 12-4

PRINT..USING, 3-17, 3-18, 12-5,
12-17
procedures

calling, 3-12
calling external, 11-16
changing, 5-10
compressing, 1-2, 1-5, 4-3, 5-9
creating, 1-2, 1-3, 2-1, 16-1, 6-1
current working, 5-1, 5-5
defined, 2-1
deleting, 1-2, 1-4, 5-6
displaying, 5-7, 8-4
editing, 1-3, 2-18
end execution, 11-21
executing, 5-10
list order, 8-5
listing, 5-5
listing current, 8-4
naming, 2-1
running, 1-2, 2-4, 4-1, 16-1, 7-1
saving, 1-2, 1-5, 5-11
stop execution, 11-21
stopping execution, 11-18
structure, 11-1
testing, 16-1
testing for errors, 1-2

program optimization, 4-1
PUT, 3-5

Q
Q, 2-4, 8-1, 8-5
quitting BASIC, 5-4

R
random access files, 3-4, 3-5

using, 3-8
random–access files, 12-1
READ, 3-3, 3-5, 3-7, 12-11
REAL, 4-2, 9-2, 9-3

defined, 2-8
formatting, 5-5

real format, 12-19
recursion, 9-7
REM/(*, 11-26
RENAME, 5-1, 5-10

Index

I–V

repeat groups, 12-25
REPEAT..UNTIL, 2-16, 11-8
request memory, 1-2, 1-4, 5-8
reserved words, 2-7
RETURN, 3-10
RUN, 2-4, 3-12, 5-1, 5-2, 5-10, 7-1,
11-15
RunB, 5-9

S
SAVE, 1-2, 1-5, 5-1, 5-11
SEEK, 3-9, 12-10
sequential files, 3-4, 12-1
SHELL, 11-20
standard I/O paths, 12-2
standard input device, 2-2
standard output device, 2-2
STATE, 8-1, 8-5
STEP, 2-14, 8-6
STOP, 11-21
STRING, 9-2

defined, 2-8
string format, 12-23
strings

changing, 6-1, 6-6
defined, 6-5
locating, 6-6
replacing, 2-18
searching, 6-1
searching for, 2-18
substituting, 6-6

subroutine, 3-10
system commands

$, 5-1, 5-3
BYE, 5-1, 5-4
CHD/CHX, 5-1, 5-4
DIGITS, 5-1, 5-5
DIR, 5-1, 5-5
E/EDIT, 5-1
EDIT, 5-2
EDIT/E, 5-6, 6-1
KILL, 5-1, 5-6
LIST, 5-1, 5-7
LOAD, 5-1, 5-8
MEM, 5-1, 5-8

PACK, 5-1, 5-9
RENAME, 5-1, 5-10
RUN, 5-1, 5-2, 5-10
SAVE, 5-1, 5-11

system mode, 1-2, 2-4, 16-1, 5-1

T
table, 3-1, 9-9
the FOR..NEXT structure, 2-13
the IF..THEN structure, 2-12
the LOOP..ENDLOOP structure,
2-13
the REPEAT..UNTIL structure, 2-13
the TYPE declaration, 3-4
the WHILE..DO structure, 2-13
TRON/TROFF, 8-6, 11-25
TYPE, 9-9, 11-27, 11-30

U
unified I/O, 12-1
UPDATE, 3-6, 3-7

V
variables, 9-7

assigning values, 9-6
data types, 2-8
declaring, 2-4, 11-29
declaring simple, 11-27
initializing, 2-5
naming, 2-7
printing value, 8-5

vector, 3-1, 9-9, 11-30

W
WHILE..DO, 2-15, 11-7
workspace

defined, 1-2
deleting procedures in, 1-2, 1-4,
5-6
displaying procedures i, 8-4
listing procedures in, 1-2, 1-3, 5-5
loading procedures in, 5-8
requ, 1-2, 1-4

WRITE, 3-5, 3-6, 12-12
access modes, WRITE, 3-7

With offices in major cities worldwide

WORLD
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414) 382-2000
Telex: 43 11 016
FAX: (414) 382-4444

EUROPE/MIDDLE
EAST/AFRICA
HEADQUARTERS
Allen-Bradley Europa B.V.
Amsterdamseweg 15
1422 AC Uithoorn
The Netherlands
Tel: (31) 2975/60611
Telex: (844) 18042
FAX: (31) 2975/60222

ASIA/PACIFIC
HEADQUARTERS
Allen-Bradley (Hong Kong)
Limited
Room 1006, Block B, Sea
View Estate
28 Watson Road
Hong Kong
Tel: (852) 887-4788
Telex: (780) 64347
FAX: (852) 510-9436

CANADA
HEADQUARTERS
Allen-Bradley Canada
Limited
135 Dundas Street
Cambridge, Ontario N1R
5X1
Canada
Tel: (519) 623-1810
FAX: (519) 623-8930

LATIN AMERICA
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414) 382-2000
Telex: 43 11 016
FAX: (414) 382-2400

As a subsidiary of Rockwell International, one of the world’s largest technology
companies — Allen-Bradley meets today’s challenges of industrial automation with over
85 years of practical plant-floor experience. More than 13,000 employees throughout the
world design, manufacture and apply a wide range of control and automation products
and supporting services to help our customers continuously improve quality, productivity
and time to market. These products and services not only control individual machines but
integrate the manufacturing process, while providing access to vital plant floor data that
can be used to support decision-making throughout the enterprise.

Publication 1771-6.5.103 September 1992 PN 955113-16
Printed in USA

	1771-6.5.103, OS-9 BASIC User Manual
	Inside Cover
	Preface - Introduction
	Microware BASIC Features
	The History of Microware BASIC
	Concerning This Manual

	Table of Contents
	1 - Overview
	Introduction
	Getting Started
	Fundamental Commands

	2 - Getting Started
	Naming Your Procedure
	Writing Your First Procedure
	The DIM Statement: Declaring Variables
	Variable Data Types
	Constants
	Operators
	Conditional Control: The IF.. THEN Structure
	Looping Statements
	Editing Your Procedures
	Line Numbers and the GOTO Statement
	Putting It All Together

	3 - Program Construction: Complex Data Types and Subroutines
	Introduction
	Arrays
	The TYPE Declaration
	External Files
	Subroutines
	Calling Procedures
	Command Line Parameters
	Formatted Output: The PRINT .. USING Statement

	4 - Program Optimization
	General Execution Performance of BASIC
	Optimum Use of Numeric Data Types
	Looping Quickly
	Optimum Use of Arrays and Data Structures
	The PACK Command
	Eliminating Constant Expressions and Sub- Expressions
	Fast Input and Output Functions
	Professional Programming Techniques

	5 - System Mode
	System Mode Commands
	$
	BYE (or <eof> character) Exit Basic
	CHD/CHX Change Directories
	DIGITS Formats Numerical Output (Real Numbers)
	DIR Display Directory of Workspace
	EDIT/E Enter Edit Mode
	KILL/KILL* Delete Procedure from Workspace
	LIST/LIST* Display Listing of Procedure
	LOAD Load Procedure into Workspace
	MEM Display or Request Workspace Memory
	PACK/PACK* Pack Procedure
	RENAME Rename a Procedure
	RUN Execute a Procedure
	SAVE/SAVE* Write Procedure to an Output File

	6 - Edit Mode
	Edit Mode Commands
	How the Editor Works
	Line-Number Oriented Editing
	String-Oriented Editing

	7 - Execution Mode
	Running Programs
	Execution Mode: Technically Speaking

	8 - Debug Mode
	Overview of Debug Mode
	$
	BREAK
	CONT
	DEG/RAD
	DIR
	LET
	LIST
	PRINT
	Q
	STATE
	STEP
	TRON/TROFF
	Debugging Techniques
	Debug Mode as a Desk Calculator

	9 - Data Types and Data Structures
	Data Types
	Data Structures
	The Five Basic Data Types
	The BYTE Data Type
	The INTEGER Data Type
	The REAL Data Type
	Internal Representation of REAL Numbers
	The STRING Data Type
	The BOOLEAN Data Type
	Automatic Type Conversion
	Constants
	Numeric Constants
	Boolean Constants
	String Constants
	Variables
	Parameter Variables
	Arrays
	Complex Data Types

	10 - Expressions, Operators, and Functions
	Evaluation of Expressions
	Operators
	Operator Precedence
	Functions

	11 - Program Statements and Structure
	Program Structure
	Assignment Statements
	LET
	POKE
	Control Statements
	IF..THEN..ELSE
	FOR..NEXT
	WHILE..DO
	REPEAT..UNTIL
	LOOP..ENDLOOP/ EXITIF.. ENDEXIT
	GOTO
	GOSUB..RETURN
	ON GOTO/ON GOSUB
	ON ERROR GOTO
	Execution Statements
	RUN
	KILL
	CHAIN
	SHELL
	END
	STOP
	BYE
	DIGITS
	ERROR
	PAUSE
	CHD/CHX
	DEG/RAD
	BASE0/BASE1
	TRON/TROFF
	Comment Statements
	REM/(*
	Declaration Statements
	DIM
	PARAM
	TYPE

	12 - Files and Unified Input/Output
	Files and Unified Input/ Output
	I/O Paths
	INPUT
	PRINT
	OPEN
	CREATE
	CLOSE
	DELETE
	SEEK
	READ
	WRITE
	GET/PUT
	DATA/READ/RESTORE
	Formatted Output: The Print Using Statement
	Real Format
	Exponential Format
	Integer Format
	Hexadecimal Format
	String Format
	Boolean Format
	Control Specifications
	Repeat Groups

	A - Sample Programs
	B - Quick Reference
	System Mode Commands
	Edit Mode Commands
	Debug Mode Commands
	Basic Reserved Words
	Basic Statements
	Transcendental Functions
	Numeric Functions
	String Functions
	Miscellaneous Functions
	Operator Precedence
	Notes

	C - Basic Error Codes
	Notes

	D - RUNB
	Index
	Back Cover

