0S-9 BASIC

ALLEN-BRADLEY




Copyright and Revision
History

Disclaimer

Reproduction Notice

Trademarks

Copyrightd 1991 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optical, chemical, manual or otherwise is prohib-
ited, without written permission from Microware Systems Corporation.

This manual reflects Version 2.4 of Microware BASIC. Version 2.4 of
Microware BASIC is to be used with Version 2.4 or greater of the OS-9
operating system.

Revision G

Publication Date: January, 1991
Publication Editor: Walden Miller, Ellen Grant
Product Number: BAS-68-NA-68-MO

The information contained herein is believed to be accurate as of the date
of publication. However, Microware will not be liable for any damages,
including indirect or consequential, from use of the OS-9 operating system,
Microware-provided software or reliance on the accuracy of this
documentation. The information contained herein is subject to change
without notice.

The software described in this document is intended to be used on a single
computer system. Microware expressly prohibits any reproduction of the
software on tape, disk or any other medium except for backup purposes.
Distribution of this software, in part or whole, to any other party or on any
other system may constitute copyright infringements and misappropriation
of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have
guestions concerning the above notice, the documentation and/or software,
please contact your OS-9 supplier.

0S-9, Personal OS-9, Professional OS-9, Basic09, and Microware Basic
are trademarks of Microware Systems Corp.
UNIX is a trademark of Bell Laboratories.

Microware Systems Corporatieri900 N.W. 114th Street
Des Moines, lowa 50325-70#7/Phone: 515/224-1929



Preface

Introduction

Introduction

Microware BASIC is an enhanced structured Basic language programming
system. It was created for the 68000 Microprocessor.

In addition to the standard BASIC language statements and functions,
Microware BASIC includes many of the useful elements of the PASCAL
programming language. This allows programs to be modular,
well-structured, and use sophisticated data structures. It permits full access
to almost all of the OS-9 operating system commands and functions so it
can be used as a systems programming language.

Microware BASIC is unusual in that it is arteractive compiler. It has
the fast execution speed typical of compiler languages and the ease of use
and memory space efficiency typical of interpreter languages.

Microware BASIC includes a powerful text editor, a multi-pass compiler, a
run-time interpreter, a high-level interactive debugger, and a system
executive. Each of these components is carefully integrated so you see a
friendly, highly interactive programming resource. It provides all the tools
and helpful facilities needed for fast, accurate creation and testing of
structured programs.

These features make Microware BASIC an ideal language for many
applications: scientific, business, industrial control, and education.

Microware BASIC Features Structured, recursive BASIC with Pascal-type enhancements:

= allows multiple, independent, named procedures

= procedures called by name with parameters

= multi-character, upper or lower case identifiers

= variables and line numbers local to procedures

= line numbers optional

= automatic linkage to ROM or RAM “library” procedures
= PACK command compacts program and provides security
= PRINT USINGwith FORTRAN-like format specifications



Preface

Introduction

Extended Control Structures (with Unique Closure Elements):

= IF...THEN...[ ELSE...] ENDIF
» FOR..TO..[ STEP ]..NEXT
= REPEAT...UNTIL...

» WHILE...DO...ENDWHILE
= LOOP...ENDLOOP

« EXITIF...THEN...ENDEXIT

High-speed, high-accuracy math:

= 14 decimal-digit 64 bit binary floating point
= Full set of transcendentals (SIN, ASN, ACS, LOG, etc.)

Extended data structures:

= Five Basic data types: BYTE, INTEGER REAL, BOOLEAN, and
STRING

= One, two, or three dimensional arrays

= User-defined complex structures and data types

Powerful interactive debugging and editing features:

= Integral, full-featured text editor

= Syntax error check upon line entry and procedure compile
= Trace mode reproduces original source statements

= Renumber command for line numbered procedures

The History of Microware Microware Basic was conceived in 1978 as a high-performance

BASIC programming language to demonstrate the capabilities of the 6809
microprocessor to efficiently run high-level languages. Microware BASIC
was developed at the same time as the 6809 under the auspices of the
architects of the 6809. It was originally titlBasicO9 The project covered
almost two years, and incorporated the results of research in such areas as
interactive compilation, fast floating point arithmetic algorithms, storage
management, high-level symbolic debugging, and structured language
design. These innovations give Microware BASIC its speed, power, and
unique flavor.

Microware BASIC was commissioned by Motorola, Inc., Austin, Texas,
and developed by Microware Systems Corporation, Des Moines, lowa.
Principal designers of Microware BASIC were Larry Crane, Robert
Doggett, Ken Kaplan, and Terry Ritter. The first release was in February,
1980.

Excellent feedback, thoughtful suggestions, and carefully documented bug
reports from Microware BASIC users all over the world have been
invaluable to the designers in their efforts to achieve the degree of
sophistication and reliability Microware BASIC has today.



Concerning This Manual

Preface

Introduction

This manual is divided into two parts: the BASIC Tutorial and the BASIC
Reference Manual.

The tutorial section is written for beginning programmers having little
experience with Pascal or other high level languages. Beginning
programmers should work through the examples given to help familiarize
themselves with Microware BASIC control structure.

Readers having adequate programming skills are urged to browse the
tutorial for a feeling of the Microware BASIC environment. A complete
index is provided for easy use of the reference section.

In this manual, Microware BASIC is referred to as BASIC, unless making
reference to other BASIC languages.



Table of Contents

0S-9 BASIC User Manual

SECTION1  THE BASIC TUTORIAL

Overview

Getting Started

Program Construction:
Complex Data Types and
Subroutines

Program Optimization

Chapter 1

Introduction . . . ... ... 1-1
Getting Started . . . ... . . . 141
Fundamental Commands . . ............... ... ... ... ... | -2
Chapter 2

Naming Your Procedure . . ... ... .21
Writing Your First Procedure. . .. ... ... e . 2f2
The DIM Statement: Declaring Variables . .. .................... P-4
Variable Data TYypesS. . . ..ot . .2}8
CONStANTS. . . . . | .28
OPEIALOLS. . . v v oo e et e e e e e e e e e e [ 2-1p
Conditional Control: The IF.THEN Structure . . ................ 2112
Looping Statements. . . ... ... .. 2-13
Editing Your Procedures . . . .......... . . . . 2-18
Line Numbers and the GOTO Statement. .. ................... . 2-24
Putting It All Together. . . ... ... . 2-2b
Chapter 3

INntroduction . . . ... ... 3:-1
ALY S ot .3-]
The TYPE Declaration. . . ............ ... ... .. ... .34
External Files . . ...ttt e [.3]
SUbroUtinesS. . . ... .3-10
Calling Procedures. . . ... ..3-12
Command Line Parameters . .. .......... ... i, .. 3114
Formatted Output: The PRINT .. USING Statement............. B-17
Chapter 4

General Execution Performance of BASIC. . . ................... 4-1
Optimum Use of Numeric Data Types. . ... ... -2
Looping Quickly . . ... .. . A4-2
Optimum Use of Arrays and Data Structures. . . ................. 4-3
The PACK Command. . . ...t 413
Eliminating Constant Expressions and Sub-Expressions. . . ....... 4-3
Fast Inputand Qutput Functions . . ... ......... ... ... ... . @B-3
Professional Programming Techniques. . .. ..................... 4-4




SECTION 2

Table of Contents

0S-9 BASIC User Manual

System Mode

Edit Mode

Execution Mode

BASIC REFERENCE GUIDE

Chapter 5

System Mode Commands. . . ... . 51
B 5-3
BYE (or<eof>character) . ......... ... . 514
CHD/CHX . . e 5-4
DIGITS . 5-5
DIR o 5:5
EDIT/E . 5-6
[ - )

L ST L ST e 5-7
LOAD .o 5-7
MEM o 5:-8
PACK/PACK 5-8
RENAME . . 5-9
RUN .. 5-10
SAVE/SAVE® . . 5:10
Chapter 6

Edit Mode Commands. . . ...t . 61
How the Editor Works . ... ... ... ... ... .. . . . .62
Line-Number Oriented Editing . . . .. ... .. ... i . 6f3
String-Oriented Editing . . . ... .644
Chapter 7

Running Programs. . . ... ... .7
Execution Mode: Technically Speaking. . . ...................... 7-2




Debug Mode

Data Types and Data
Structures

Table of Contents

0S-9 BASIC User Manual

Chapter 8

Overview of DebugMode. .. ... ... . . 8t1
B 8-2
BREAK . . 8-2
CONT o e .8-3
DEG/RAD . . .o 8-3
DIR L 8:4
LET o 84
LIST o 8:4
PRINT . -5
Q o 8-5
STATE . .8-5
STEP . .8-6
TRON/TROFF. . . e e 8-6
Debugging Techniques . . . . ... .. g-7
Debug Mode asaDesk Calculator . . ......................... 8-8
Chapter 9

Data TYPeS. . . ot e 941
Data StruCtures. . . ... ..o . 911
The Five Basic Data Types. . . ...ttt e e e . 9-2
The BYTE Data Type. . .. ..o ittt 992
The INTEGER Data Type . . . . ..o oo . 93
The REAL Data Type. . . . oottt e 943
Internal Representation of REAL Numbers . . ................... 9-4
The STRING Data TYpe . . oo oo . 94
The BOOLEAN Data Type . . . ..ot . 915
Automatic Type CoNversion . . ...ttt i e e . 96
CONStANTS. . . . . e .96
NUMENC CONStaNtS. . . ... e et . .96
Boolean Constants. . . ......... .. . . ..9-7
String CoNstants. . . ... . 917
Variables . ... .. 9:y
Parameter Variables. . .. ... ... ... . . .. 9-8
AT Y S o .9-4
Complex Data TYPeS . . . vttt .99




Table of Contents

0S-9 BASIC User Manual

Expressions, Operators, and
Functions

Program Statements and
Structure

Chapter 10

Evaluation of EXpressions. . . ... ..10-1
OPeralOrS. . . vt A1.0-p
Operator Precedence. .. ...t . .10-3
FUNCHIONS. © o ot ettt e et e e e e e e e e [ 10-]
Chapter 11

Program Structure . . ... . . . 1111
ASSIGNMENt STAtEMENES. . . . ..\ v v e et ettt e .12
LET oo [11-2)
POKE . . .o e .11-3
Control Statements. . . .. ... L1144
IF.THEN..ELSE . . ... ... . . . e L11-4
FOR.NEXT . .. e e e e 11-5
WHILE..DO ... e e e e 11-7
REPEAT.UNTIL. ..\ttt ettt e et .11-8
LOOP..ENDLOOP/EXITIF.ENDEXIT. . ... ... .11-p
GOTO . .11-10
GOSUB..RETURN. . . ... e e e CA1-11
ONGOTO/ON GOSUB. . . ..t .. 11-1p
ONERROR GOTO. . ..ttt e e e [[.11-1B
EXecution Statements . . ... ...ttt [..11-15
RUN .. A1-15
KILL 11-:18
CHAIN 11-19
SHELL . . . .11-20
END . .. A11-21
STOP ... [.11-2
BYE ..o 11-22
DIGITS .. 11-22
ERROR . .. . 11:23
PAUSE . . . . . 11-23
CHD/CHX . . e 11-24
DEG/RAD . ...\ttt [.11-24
BASEO/BASEL. . .. ..o [[11-2%
TRON/TROFF. . . e .11-2%
Comment Statements . . ... ...11-pP6
REM/(* 11-26
Declaration Statements. . . . ... .. 11-p7
DIM e e 11:27
PARAM . .ottt [.11-29
TYPE . oo 11-30




Files and Unified
Input/Output

Table of Contents

0S-9 BASIC User Manual

Sample Programs

Chapter 12

Files and Unified Input/Output . . . .. ........... ... . ... L 1201
/O Paths . . .. 12-p
INPUT L e .12-3
PRINT [12-4
OPEN. . . e e .12-6
CREATE . . 12-7
CLOSE . o 12-§
DELETE ... | 12-9
SEEK . vttt [L12-10
READ .. 12-11
WRITE .. .12-12
GET/PUT . . e . 12:13
DATA/IREAD/RESTORE . . ... e .12-16
Formatted Output: The Print Using Statement. . .............. ..o 1217
Real Format . . ... .. ..12-1P
Exponential Format . . . ........ ... .. . [..12-20
Integer Format . . . ... . .. 12:201
Hexadecimal Format . . ... ... .. .. . .. . ... .. 12-22
String Format . . ... ..12-28
Boolean Format . . ........ ... .. . ... 12-24
Control Specifications . . . . ... ..12-25
Repeat GroUPS . . . oot e . .12-25
Appendix A

Quick Reference

Appendix B

Basic Error Codes

Appendix g

RUNB

Appendix D




Section

The BASIC Tutorial

This section of the manual describes:

= how new Microware BASIC users can become comfortable with
programming BASIC

= how users get started programming BASIC

= complex data types and subroutines that you can use with
Microware BASIC

= how to obtain program optimization when executing your procedures



Introduction

Getting Started

Chapter

Overview

This manual is designed for two purposes:

= to help new Microware BASIC users become comfortable with
programming in BASIC

= to serve as a reference for new and existing users

In order to do this, this manual is divided into two sections. The first
section is a user manual that explains how to create a program with BASIC
and how to use BASIC's functions to make your programs better. The
second section is a reference manual.

Before using Microware BASIC, you should be familiar with OS-9. You
should be familiar with either the Using Personal OS-9 manual or the

Using Professional OS-9 manual. These manuals provide an understanding
of how OS-9 stores files as well as other useful information.

When you start your computer or log in to your account, the OS-9 prompt
is displayed. This manual uses a dollar sigrtdq represent the
0OS-9 prompt.

To enter the BASIC environment, typasic at thes prompt and press the
[Return]  key. OS9 responds by printing:

$ basic
Copyright 1984 by Microware.
Reproduced under license

Microware Basic V2.4
Ready
B:

Important: If you are not running version 2.4 of BASIC, the version
number will be different.

11



Chapter 1

Overview

Fundamental Commands

1-2

TheB: prompt indicates that you are in BASIGgstem mode Microware
BASIC has four modes:

Mode: Description:

System Mode Used for executing system commands.
Edit Mode Used for creating and editing procedures.
Execution Mode Used for running procedures.

Debug Mode Used for testing procedures for errors

You must remember that BASkbeshave different modes. You should be
aware that some commands only operate in one mode. Therefore, if you
execute a command that you feel should work and it does not, check that
you are in the proper mode.

These modes are all discussed in more detail in the appropriate sections. A
full description of each mode is located in the reference section of
this manual.

When you create procedures in BASIC, they are created in BASIC's
workspace The workspace is the memory area where procedures are
created or loaded, edited, and executed. The procedures in this area are not
automatically saved when you exit BASIC. Therefore, you must save any
files in your workspace before you exit BASIC.

There are several commands that you should know before beginning to
program in BASIC. These commands are as follows:

Command: Description:

BYE Exits BASIC.

DIR Lists procedures currently in your workspace.

EDIT Enters edit mode.

KILL Deletes a procedure from your workspace.

LOAD Loads files from the OS-9 file system to your workspace.

MEM Displays or requests workspace memory.

PACK Compresses a BASIC procedure into BASIC intermediate code.
SAVE Saves your procedures in the OS-9 file system.




Chapter 1

Overview

BYE: Exiting BASIC

When you have finished using BASIC and have saved all procedures that
you want to save, you can exit BASIC by typing the comneamht the
system prompt:

B: BYE

You are returned to your OS-9 shell prompt.

DIR: Listing Procedure Names in Your Workspace

The DIR command displays the names and sizes of all procedures in your
workspace. You can also use a carriage return while in system mode.

DIR displays a table of all procedure names with two numbers next to each
name. The first column, proc size, is the size of the corresponding
procedure. The data size column shows the amount of memory that the
procedure requires for its variables. For example:

B: DIR

Name  Proc-Size Data-Size
testprog 226 66
prog2 162 82
exloop 220 74
*readit 224 66
4266 free
Ready
B:

The last line shows the amount of free bytes of workspace memory
remaining. You may use this information to estimate how much memory
your program needs to run. You must have at least as much free memory as
the data size of the procedure(s) to be run. If a data size number is

followed by a question mark, you need more memory.

EDIT: Entering Edit Mode

When you enter the EDIT or E command, you exit system mode and enter
edit mode. To enter edit mode, typmiT or E and the name of a procedure
file to edit:

e myprocedure

1-3



Chapter 1

Overview

1-4

If you do not enter a procedure file, BASIC assigns the name Program to
your procedure. The EDIT command is discussed in more detail in the
next chapter.

KILL: Deleting Procedures in Your Workspace

At any time, you may permanently erase one or all of your procedures in
your workspace by using the KILL commamalLL followed by a

procedure name erases the specified procesre. erases all procedures
in the workspace. For example:

Command: Description:
B: KILL progl Erases progl from workspace.
B: KILL* Erases all procedures from workspace.

LOAD: Loading Procedures

To retrieve a procedure from your current data directory, you can use the
LOAD command followed by the name of the file:

B: LOAD oldprog

This command loads the file oldprog into your workspace. If you have a
procedure in your workspace with the same name as one in the file, BASIC
uses the procedure loaded from the file.

MEM: Displaying or Requesting Workspace Memory

When you enter BASIC, OS-9 automatically allocates approximately 4K of
workspace memory for BASIC. If you need more memory, you can use the
MEM command to get additional memory, if the additional memory is
available. To use the MEM command, typevand the amount of memory
you want in bytes. For example:

MEM20000

This command line requests 20K of memory. BASIC always rounds the
amount you request up to the next highest multiple of 256 bytes. If MEM
displays the following, the requested amount of memory is not available:

What?



Chapter 1

Overview

You can also use OS-9's #<memory> option to specify more memory when
you enter BASIC. For example, to call BASIC with 16K of memory, enter
the following command:

$ basic #16k

PACK: Compressing Procedures

The PACK command compresses a BASIC procedure and places it in your
current execution directory. Depending on the number of comments, line
numbers, etc., packed procedures execute from 10% to 30% faster than
unpacked procedures. BASIC loads the packed procedure when you try to
run it after it has been packed. The following is an example of

using PACK:

B: PACK exloop

Important: Before you PACK a procedure, always SAVE it first. You
cannotload a packed file into your workspace. Packing a procedure
removes it from your workspace.

SAVE: Saving Procedures

When you exit BASIC, all unsaved procedures are erased. The SAVE
command allows you to save your programs.

You can use SAVE in a number of ways:

Command: Description:

Type SAVE by itself. BASIC creates a file with the name of the last edited or run
procedure in your current data directory. If a file already has this
name, BASIC returns the prompt: Rewrite?. If you respond y for yes,
it replaces the file previously stored in that space with the new
procedure. OS-9 does not allow two files with the same name in the
same directory. By answering n for no, you cancel the SAVE
command without changing the procedure in your workspace or the
file in your directory.

Type SAVE >and afile | This saves the procedure in a file with the specified name.
name.

Type SAVE* and a file This saves all procedures in your workspace in the specified file.
name.

Type SAVE, followed by | This saves the specified procedures in the specified file.
one or more procedures,
followed by a >, followed
by a file name.

Important: If you exit from BASIC, your programsill not automatically
be saved. Yomustsave them using one of these methods or they will
be lost.

1-5



Naming Your Procedure

Chapter

Getting Started

Programs in BASIC are callgafocedures A procedure contains BASIC
instructions as specified by the BASIC language.

Procedures are created in edit mode. To enter edit mode, type e and the
name of the procedure you want to create:

B: e myprogram

Procedure names may contain from 1 to 28 upper or lower case letters,
numbers, or special characters (as listed below). While the file name may
begin with any of the following characters or digits, the file name must
contain at least one number or letter. Within these limits, a name may
contain any combination of the following:

Description: Character:
upper case letters A-Z
underscores _

lower case letters a-z

dollar signs $

numbers 0-9
periods

If you do not specify a procedure name, BASIC assigns the name Program
to the new procedure.

BASIC responds with the following:

B: e myprogram
PROCEDURE myprogram

*

E:

BASIC prints the word PROCEDURE and the name of the procedure. This
is followed by an asterisk (*) signifying the current edit line in the
procedure. The last line displays the edit mode prompt,

2-1



Chapter 2

Getting Started

Writing Your First Procedure

2-2

In edit mode, the first character of each line is reserved for edit commands.
If you forget to type an edit command, BASIC responds with the
following prompt:

What?

The most important edit command is tBgace] character. Placing a
[Space] in the first character position saves the line of the procedure that
immediately follows as a BASIC statement.

Important: The edit commands are discussed later in this chapter. There is
also a chapter in the reference section which deals with the edit commands.

When writing your procedure, you will probably want to receive and print
data. You can use the INPUT statement to receive data and the PRINT
statement to print the data.

= INPUT accepts data during the execution of a procedure. The data is
normally read from your terminal (ttstandard input device.

= PRINT outputs the text or the values given on the print line. The output
is normally sent to the terminal (ts&andard output device.

Important: Both input and output can be redirected. This allows you to
read data from a file or print a file to the printer. For more information on
redirecting input and output, refer to either Using Personal OS—9 or Using
Professional OS-9.

With these two commands, you can write a simple procedure, myprogram.
This procedure asks you for your name and prints a message. The first line
of the procedure asks you to enter your name:

E: PRINT “type your name”

You must enter a space before the PRINT statement. If you forget to do
this, BASIC will not save your command. If entered correctly, when you
execute myprogram, the characters between the quotes will be printed on
the terminal screen.

Important: If you make a mistake while entering this procedure line, skip
ahead to the section in this chapter on editing procedures.

Because the user will try to enter their name, the next statement reads
their input:

E: INPUT name$



Chapter 2

Getting Started

Once again, you must enter a space before the INPUT statement to save the
line. When this procedure is executed, this command causes Basic to wait
for a line of text to be received from the keyboard. BASIC accumulates

text from the keyboard, character by character, ufiéarn] ends the

line. This text is saved in the memory reserved for the variable name$.

Important: Variables are discussed in more detail in a later section.
To finish this program, enter the final two lines:

E: PRINT “Hi, ";name$;". It's been nice talking to you.”

*

E: END

The semicolon following the quote after “Hi,” tells BASIC that something
else is to be printed on this line. BASIC inserts the text that the variable
name$ represents. The next semicolon informs BASIC that there is more to
print on the same line.

When a PRINT statement contains multiple values, it prints the values
consecutively. You must separate each of these values by a comma or a
semicolon. If the separator is a comma, BASIC moves to the next
16-column tab stop before printing the next value. If the separator is a
semicolon, no space separates the fields.

Important: If you do not want to use the default tab stops, refer to the
description of the TAB command located in the command summary.

The END statement is optional. It tells BASIC to stop executing the
procedure and return to system mode. BASIC returns to system mode after
executing the last line of code within the procedure.

To list your procedure, typ®. This edit mode command lists
the procedure:

E: I*

PROCEDURmEyprogram

0000 PRINT “type your name”

0012 INPUT name$

0017 PRINT “Hi, “; name$; ". It's been nice talking to you.”
0035 END

*

E:

2-3



Chapter 2

Getting Started

The DIM Statement:
Declaring Variables

2-4

Important: The editor has added some information which you did not

type. The numbers to the left of the programlarede addressesThese

are the actual memory locations where each line begins relative to the start
of the procedure. These numbers may appear strange because they are in
hexadecimal (base 16). The I-code addresses are important because when
BASIC finds an error in a procedure, it conveys as much information as it
has concerning the error. One such piece of information is the I-code
address. Basic automatically supplies I-code addresses.

Now, run the procedure. To run a procedure, you must be in system mode.
You can exit the editor and return to system mode by typing

E:q
READY
B:

Now typerun myprogram oOrrun . If you enter the RUN command without
a procedure name, BASIC executes the last edited procedure.

B: RUN myprogram

type your name

? Ellen

Hi, Ellen. It's been nice talking to you.
READY

B:

Important: The question marke] prompt tells you that the program is
waiting for input.

Congratulations! You have just written and executed your first program
with Microware BASIC.

Procedures use variables to hold values during the execution of the
procedure. The value of a variable may change during execution. In the
example myprogram, name$ was used as a variable to hold the value Ellen.

There are two ways of declaring a variable:

= the DIM statement
» inferred declaration

The DIM statement declares the variable name and the type of data that is
assigned to it during the course of the procedure. The DIM statement must
occur before you use the variable in the program. This prevents a variable
from being defined with a default data type (inferred declaration). By
standard convention, the DIM statement is used in the first few lines of

a procedure.



Chapter 2

Getting Started

The syntax for the DIM statement is as follows:
DIM <variable> [, <variable> ]: <data type>

If you declare more than one variable as the same data type, separate the
variables with commas. If you declare more than one data type in the same
DIM statement, separate the <var>:<type> statements with semicolons. For
example:

DIM x,y,z: INTEGER; a,b,c: REAL

In this example, the variables x, y, and z are defined as integer values, and
a, b, and c are defined as real values.

If the DIM statement is not used and variables are present in a procedure,
the variables are declared with default data types. All undeclared string
variables must end in a dollar sign ($). These variables are assigned a
maximum length of 32 characters.

In the case of name$ in the example myprogram, name$ was declared as a
string variable with a length of 32 characters. If the character string
assigned to name$ is longer than 32 characters, only the first 32 characters
are accepted.

By default, all other variables used are declared as REAL numbers
regardless of the intent of the procedure.
Initializing Variables

Generally, you must initialize variables. BASIC assigns a certain space in
memory large enough to hold the declared type of data. Consequently, if
the variables are not initialized, the variable may contain just about any
value. This makes any operation depending on these variables to be
very unreliable.

You can use either of two assignment statements to initialize variables.
The LET statement has the following syntax:
LET <variable> = <value or constant>

For example, if you have the following command in your procedure, x
equals one:

LET x:=1
You could also enter the following:

LET x=1

2-5



Chapter 2

Getting Started

You can also use an implied statement. Implied statements have the
following syntax:

<variable> := <value or constant>

For example, if you have the following command in your procedure, y
equals ten:

y =10
You could also enter the following:

y =10

Naming Variables: Reserved Words

Variable names may be of any length, but you will probably want to keep
them short. This_is_a_legal_variable is legal, but tedious to type. Variable
names must conform to the following rules:

= Names must begin with either an underscore or letter.

= Names cannot contain embedded blanks or dollar signs.
= Names can end in a dollar sign.

= Names can contain any alphanumeric or underscores.

= Names may not be any BASIC reserved word.

2-6



Chapter 2

Getting Started

BASIC recognizes certain words @served They cannot be used as
variable names. These reserved words are all commands and key words
used within BASIC statements:

Table 2.A

BASIC Reserved Words
ABS ACS ADDR AND
ASC ASN ATN BASE
BOOLEAN BYE BYTE CHAIN
CHD CHR$ CHX CLOSE
COS CREATE DATA DATES$
DEG DELETE DIM DIGITS
DIR DO ELSE END
ENDEXIT ENDIF ENDLOOP ENDWHILE
EOF ERR ERROR EXEC
EXITIF EXP FALSE FILSIZ
FIX FLOAT FOR GET
GOSuUB GOTO IF INKEY
INPUT INT INTEGER KILL
LAND LEFT$ LEN LET
LNOT LOG LOG10 LOR
LOOP LXOR MID$ MOD
NEXT NOT ON OPEN
OR PARAM PAUSE PEEK
PI POKE POS PRINT
PROCEDURE PUT RAD READ
REAL REM REPEAT RESTORE
RETURN RIGHT$ RND RUN
SEEK SGN SHELL SIN
SIZE SQ SQR SORT
STEP STOP STR$ STRING
SUBSTR TAB TAN THEN
TO TRIM$ TROFF TRON
TRUE TYPE UNTIL UPDATE
USING VAL WHILE WRITE
XOR

2-7



Chapter 2

Getting Started

Variable Data Types

Constants

2-8

BASIC recognizes five data types:

Type: Description:

INTEGER Whole numbers (no decimal) ranging from -2,147,483,648 to
2,147,483,647.

REAL Floating point numbers (decimal point allowed) ranging from
+2.210 —3081t0 +1.8 10 308.

BYTE Whole numbers (no decimal) ranging from 0 to 255.

STRING Letters, digits, and/or punctuation.

BOOLEAN True or False.

Important: Numbers may be INTEGER, REAL, or BYTE values. While
REAL numbers are the most versatile (that is, they have the greatest range
and can represent decimals), math operations involving them are relatively
slow. INTEGER and BYTE operations use less memory and are

executed faster.

A STRING is a variable length sequence of characters. An “empty”
STRING is a special case and contains no characters. A STRING may be
declared to have a specified length by using the DIM statement. This is
useful for saving memory space when 32 characters are not needed (the
default STRING size is 32 characters).

To declare a STRING length, type dim, followed by <variable name>:
STRING]len]. For example, to declare the variable word with a length of
five characters, you would type:

DIM word: STRING[5]

The BOOLEAN variable is most often used in conditional statements to
divert execution to certain parts of the procedure. If something is true, then
do this; otherwise, continue.

Important: For more information about data types, refer to the chapter on
data types and data structures.

Constants are frequently used in procedures to assign values to variables.
BASIC has rules that allow you to specify constants that correspond to the
five BASIC data types. There are three basic types of constants:

= numeric
» boolean
= string



Chapter 2

Getting Started

Numeric Constants

Numeric constants can be either REAL or INTEGER data types. If a
number constant includes a decimal point or uses the “E format”
exponential form, BASIC stores the number in REAL format, regardless of
whether the number could have been stored in INTEGER or BYTE format.
If you want a REAL constant, use a decimal point (for example, 12.0).
This is sometimes done if all other values in an expression are of type
REAL so that BASIC does not have to do a time-consuming type
conversion at run-time.

Numbers that do not have a decimal point but are too large to be
represented as integers are also stored in REAL format. The following are
examples of REAL constants.

Table 2.B

REAL Constraints
1.0 9.8433218 1.95E+12 10000000000
-01 -999.000099 —99999.9E-33 5655.34532

Numbers that do not have a decimal point and are in the INTEGER range
are treated as INTEGER numbers. BASIC also accepts integer constants in
hexadecimal in the range 0 to $FFFFFFFF. Hex numbers must have a
leading dollar sign. The following are examples of INTEGER constants:

Table 2.C
INTEGER Constraints
12 -3000 64000 $20 $FFFE $0

BOOLEAN Constants
The two legal BOOLEAN constants are TRUE and FALSE:
DIM flag, state: BOOLEAN

flag := TRUE
state := FALSE

2-9



Chapter 2

Getting Started

Operators

2-10

STRING Constants

STRING constants consist of a sequence of any characters enclosed by
quotation marks. To represent a quotation mark within the string, use two
consecutive quotation mark$ J. An empty string can also be represented
by two consecutive quotation marks. The following are examples of
STRING constants:

“This is a STRING constant”
“ (a null string)
“This is the “real™ thing”

An operator combines or compares values of operands: constants and
variables. Operators (except negation) take two operands and perform
some operation to produce a result. This result is generally the same type
as the operands. The table on the following page lists the operators
available and the types they accept and produce.

Operators have precedence which means they are evaluated in a specific
order (for example, multiplication is performed before addition). You can
use parentheses to override natural precedence. The compiler, however,
may remove extraneous parentheses. The legal operators are listed below,
in order from highest to lowest.

Table 2.D
Legal Operators
Highest Precedence | NOT —(negate)
A *%
* /
+ p—
> < <> = >= <=
AND
Lowest precedence | OR XOR

Operators of equal precedence are shown on the same line, and are
evaluated left to right in expressions. The only exception to this rule is
exponentiation, which is evaluated right to left. Raising a negative number
to a power is not legal in BASIC.



Chapter 2

Getting Started

In the examples below, BASIC expressions on the left are evaluated as
indicated on the right. You may enter either form, but the compiler always
generates the simpler form on the left.

BASIC representation: Equivalent form

a:= b+c**2/d a:= b+((c**2)/d)

a:=b>c AND d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=¢)

a:= (b+c+d)le a:= ((b+c)+d)/e

a:= br*c**dle a:= (b**(c*d))le

a:= —(b)**2 a:= (-h)**2

a:=b=c a:= (b=c) (returns BOOLEAN value)
Operator: Function: Operand type: Result type:
- Negation NUMERIC NUMERIC
Aor** Exponentiation NUMERIC (positive) NUMERIC
* Multiplication NUMERIC NUMERIC
/ Division NUMERIC NUMERIC
+ Addition NUMERIC NUMERIC
- Subtraction NUMERIC NUMERIC
NOT Logical Negation BOOLEAN BOOLEAN
AND Logical AND BOOLEAN BOOLEAN
OR Logical OR BOOLEAN BOOLEAN
XOR Logical EXCLUSIVE OR | BOOLEAN BOOLEAN
+ Concatenation STRING STRING

= Equal to ANY BOOLEAN
<> or>< Not equal to ANY BOOLEAN
< Less than NUMERIC, STRING 1 BOOLEAN
<= or=< Less than or Equal NUMERIC, STRING 2 BOOLEAN
> Greater than NUMERIC, STRING 3 BOOLEAN
>z or => Greater than or Equal NUMERIC, STRING 4 BOOLEAN

When comparing strings, the ASCII collating sequence is used, sothat0<1<..<9<A<B<
<Z<a<b<..<z

Important: NUMERIC refers to either BYTE, INTEGER, or REAL types.

2-11



Chapter 2

Getting Started

Conditional Control: The
[F..THEN Structure

2-12

The IF..THEN..ELSE structure is frequently used in programs. The syntax
is as follows:

IF <boolean> THEN
<statement>
ELSE
<statement>
ENDIF

This executes certain statements only if specified conditions exist. The
following example demonstrates the IF.. THEN..ELSE structure:

PROCEDURMESSAGE
PRINT “Type your name.”
INPUT name$
PRINT “Would you like the message of the day, “;name$;"? (y/n)”
INPUT answer$
IF answer$ = “y” THEN
PRINT “Space is the future”

ELSE
PRINT “Suit yourself.”
ENDIF
PRINT “Bye, “; name$; ". It's been nice talking to you.”
END

This procedure prints one of two messages depending on your input. The
condition could also depend on a computed value. Also, there could be
many statements or procedures separating the THEN and ELSE segments
of the conditional. This example just shows one of the ways you can use
this structure.

You can also use the IF..THEN statement as a single statement:
IF <boolean> THEN <line#>

This sends the control of the procedure to the specified line number if the
control condition is met. You should rarely use the IF.. THEN statement in
this way.

Important: Multiple ELSE statements are not considered errors by the
compiler (that is, they do not generate error signals). However, they do
produce irregular and non-reliable results.



Looping Statements

Chapter 2

Getting Started

When you write your programs, you may find that you want to repeat a
section of code several times. You can do this using@ng statement.
Loops cause repeated or conditional execution of the statements located
between the starting point and the ending point of the loop. Generally,
loops have one entry at the top and only one exit at the bottom. In this
sense, it becomes one statement, regardless of how many individual
statements it contains.

You can nest loops. This allows the internal statements to be executed even
more times. You should know at least what will happen on the first,

second, next to the last, and last passes through the looping structure. It is
usually during these passes when a procedure produces errors which can
halt execution.

BASIC supports four ways of adding loops into your program:

Type of loop: Description:
FOR..NEXT Executes code an exact number of times.
WHILE..DO Tests for a control variable before executing any code, and performs

only as long as the control statement remains true.

REPEAT..UNTIL Executes the code at least once regardless of the initial conditions,
and repeats the code as long as a control statement remains valid.

LOOP..ENDLOOP | Tests one or more control variables anywhere within the loop (and
perhaps more than once).

Each loop structure is discussed in greater detail. When you write your
programs, you should use the most appropriate loop for what you want to
accomplish; each loop structure has its own advantages.

As a general comment about loops, the initialization placement is very
important. You can easily create an endless loop (a loop that does not end)
by forgetting to initialize variables or by placing the initialization in the

wrong place. This is especially true when changing from one type of loop
structure to another. You should make sure that you know what happens at
the beginning and end of each loop sequence. This helps reduce the chance
of creating an endless loop.

The FOR..NEXT Loop

The FOR..NEXT loop executes a set of statements a specific number of
times. A FOR..NEXT loop begins with the FOR statement. The FOR
statement initializes the loop, and the NEXT statement ends the loop. The
following is an example of a FOR..NEXT loop:

FORx=1TO 3

PRINT “Hi There!”
NEXT x

2-13



Chapter 2

Getting Started

2-14

This loop prints the string Hi There! three times. The first time BASIC
encounters the FOR statement, x equals 1 (FOR x=1). BASIC executes the
statement(s) within the loop, which in this example is a PRINT statement.
When it reaches the NEXT statement, it increments x and goes back to the
FOR statement. x now equals 2, so BASIC again executes the PRINT
statement and goes to the NEXT statement. Once again, X is incremented.
x now equals 3. BASIC executes the PRINT statement and goes to the
NEXT statement. This time when the NEXT statement increments x, x is
greater than three. Therefore, BASIC does not execute the PRINT
statement. Instead, it jumps to the statement that follows NEXT.

Using STEP Within a FOR..NEXT Loop

By default, the NEXT statement increments the variable by one each time.
If you want to increment the variable by a value other than one, you need
to include a STEP declaration in the FOR statement. For example:

FORx=1to 10 STEP 2
PRINT “Hi There!”
NEXT x

The string Hi There! is printed five times because each time BASIC comes
to the NEXT statement, x is incremented by two. Therefore, after the first
pass through the loop, x equals three instead of two.

The value to STEP may be a positive or negative number, and it may be
either an integer or a real. If it is a real data type (for example, STEP .5)
the control variable must also be a real data type. The following is an
example of a real data type for the STEP value:

DIM x:REAL

FOR x=1TO 5 STEP .5
PRINT x

NEXT x

END

This example prints the value of x for each pass through the loop.



Chapter 2

Getting Started

The WHILE..DO Loop

The WHILE..DO loop tests for a control variable before executing any
code. It continues to loop as long as the control statement located in the
WHILE statement remains true. If the control statement in the WHILE
statement is false the first time it is encountered, the loop is not executed.
The WHILE..DO loop has the following syntax:

WHILE <boolean> DO

ENDWHILE

<boolean> may be an expression (such as x<5) or merely a BOOLEAN
variable (such as WHILE red DO).

The following is an example of a WHILE..DO loop:

x:=1

WHILEx<5 DO
PRINT x
X:=xX+1

ENDWHILE

The first line is outside of the WHILE..DO loop, but it is important for this
loop because it initializes the value of x. The next line begins the loop. It
tells BASIC to test the value of x. If x is less than five, then the statements
inside the loop are executed. If the value of x is five or greater, the
statements inside the loop are not executed. Therefore, the output from this
loop looks like this:

PwbdE

Important: You mustchange the value of the conditional within the loop.
If you do not, the loop never exits. For example, the following is an
endless loop because the internal commands do not affect the
conditional statement:

a=5
WHILE a <10 DO

PRINT “This is an endless loop”
ENDWHILE

2-15



Chapter 2

Getting Started

2-16

The REPEAT..UNTIL Loop

Another loop statement is REPEAT..UNTIL. It is similar to the
WHILE..DO statement. The syntax is as follows:

REPEAT

UNTIL <boolean>

The major difference is that in a REPEAT..UNTIL statement, the
conditional statement is tested at the bottom of the loop. This means that
the statements within the loop are executed at least once, even if the
conditional statement is false the first time.

The following is an example of a loop using REPEAT..UNTIL:

x:=1

REPEAT
PRINT x
X = x+1

UNTIL x>10

Notice again that x is initialized outside of the loop. If it were initialized
inside of the loop, the loop would never end. The next statement, REPEAT,
begins the loop. The statements within the loop are always executed during
the first pass. The UNTIL statement tests the conditional value. If the
statement is false, the loop executes again. If the statement is true, the loop
is not executed again.

Because the variable is tested at the bottom of the loop, it usually has an
opposite test from one you would find in a WHILE loop. You can easily
introduce errors into your program when you change from a WHILE..DO
loop to a REPEAT..UNTIL loop by forgetting to change the

conditional statement.



Chapter 2

Getting Started

The LOOP..ENDLOOP Loop

The final type of loop structure available in BASIC is the
LOOP..ENDLOOP statement. It has no built-in control statement to test for
exit, so it uses an internal structure, the EXITIF.. THEN statement. The
syntax for these two structures are as follows:

LOOP
<statements>

EXITIF <boolean> THEN
<statements>
ENDEXIT

<statements>
ENDLOOP

The LOOP structure would execute endlessly without the EXITIF
construct. You can use the EXITIF structure as many times as needed
within a LOOP. In this way, you may exit a loop for different reasons. The
following is an example of a LOOP..ENDLOOP:

x:=1

LOOP
PRINT “x is a small number”
X =x+1

EXITIF x>3 THEN

PRINT “x is now greater than three”
ENDEXIT

ENDLOOP
The execution of this procedure is similar to the REPEAT..UNTIL. The
loop is executed until x > 3. Then, the statement between the THEN and

the ENDEXIT is executed (PRINT). The loop is then exited.

You can omit the statement to be executed in the EXITIF loop. For
example, you could enter:

EXITIF x>3 THEN
ENDEXIT

This is known as a null statement because nothing occurs.

2-17



Chapter 2

Getting Started

The EXITIF..THEN structure may be used in any of the looping structures
to exit anywhere within the loop. This allows greater freedom in building
your procedures.

Once you have written a procedure, you can change it by using the editor.
There are a number of commands available in edit mode for this purpose.

Editing Your Procedures

2-18

They are as follows:

Command: Description:

<return> Moves the edit pointer forward one line.

+[<number>] Moves the edit pointer forward the specified number of lines (default
is 0).

+* Moves the edit pointer to the end of the procedure.

—[<number>] Moves the edit pointer back the specified number of lines.

*

Moves the edit pointer to the beginning of the procedure.

<space> <text>

Inserts a line directly before the current line.

<space> <line#>
<text>

Inserts or replaces a numbered line.

<line#> <return>

Moves edit pointer to specified line.

c[*]<delim><string1>
<delim><string2>
<delim>

Replaces <string1> with <string2> in the current line. If used with an
asterisk (*), the entire procedure is searched and replaced. <delim>
is a delimiter character that is not within either string.

For example:

c.why.why not?. Legal syntax
c?why?why not??  lllegal syntax: ?is in the string

d[] [line#]

Deletes the specified lin. elf no line is specified, the current line is
delete. dif a negative number is specified, the specified number of
lines before the current line are delete. The forms d—* or d+* are also
allowed. They delete all lines before or after the current line
respectively. d* deletes the entire procedure.

I[*] [<number>]

Lists the specified number of lines from the current edit pointer. If the
number is negative, the specified number of lines before the current
line is displayed. I* lists the entire procedure.

q Quits the editor, and returns to system mode.
r[*] [<number>], Renumbers the numbered lines in a procedure. The r command
[<increment>] begins at the current line and renumbers the first numbered line

found with the specified number. After that, it increments the line
number by the specified increment. If an asterisk (*) is used, the
renumbering begins with the start of the procedure. This also
renumbers any references to line numbers (GOTO or IF. THEN
statements). The default values for renumbering are a starting value
of 100 with an increment of 10.

s[*] <del> <string>
<del>

Searches for the indicated string on the current line. If an asterisk (*)
is used, the entire procedure is searched and the pointer is moved to
the first matching string. Delimiters (<del>) follow the same rules as
the ¢ command.

<escape>

Quits the editor.




Chapter 2

Getting Started

Using the Edit Mode Commands

To use the editor, you must be in edit mode. You can use these commands
to create, display, and edit the procedure mtable. This section goes step by
step. You should enter the commands on your own terminal.

First, enter the command e mtable from the system mode:
B: e mtable
When you have pressed return, the following is displayed:

PROCEDURmtable

*

Now, enter the procedure. Notice that you can type the procedure all in
lower case characters. When the procedure is displayed, you will see that
all reserved words have been converted to upper case letters. Remember to
add a space before each line.

E: dim a,b: integer

*

a=1

*m

E: print

*

E: while a<10 do
*

E: b:=1
What?

The last two lines show what happens when you forget to add the <space>
command before a line. Just re-type the line and continue:

E: b:=1

*

E: while b<=10 do

*

E: printa;“**“ b;“ =" a*b; tab(mod(b,5)*13)
*

E: if pos>55 then print
*

E: ednif
ednif

N
Error #000:027
*00AE ERR ednif
E:

2-19



Chapter 2

Getting Started

The last six lines of this section show what happens if you make a mistake
while typing in a command line. If this happens, enter an extra carriage
return and re-type the command line. The line containing the error can be
deleted later.

E:

*

endif

*m

b:=b+1

*m

endwhile

*m

print

*m

a:=atl

*m

endwhile

*m

end

*m

m

Now that the procedure is entered, type exit edit mode:

E:qg
Ready

To run the procedure, type run mtable:

B: run mtable
Error #000:051
Ready

2-20



Chapter 2

Getting Started

In this example, the procedure will not execute until the line containing the
error is deleted. Therefore, you should re-enter edit mode and use the |*
command to list your program:

B: e mtable
PROCEDURE mtable
*0000 DIM a,b:INTEGER

E:I*

*0000 DIM a,b:INTEGER

0012 a=1

0020 PRINT

0024  WHILE a<10 DO

003A b:=1

0048 WHILE b<=10 DO

005E PRINT a; “*“ b; “ =", a*b; TAB(MOD(b,5)*13)
0098 IF POS>55 THEN PRINT
00BO ERR ednif

00BA ENDIF

00BE b:=b+1
00D2 ENDWHILE
oobDC PRINT
0OEO a:=a+l
O0F4  ENDWHILE
OOFA END

E:

Notice that the first line of the procedure is displayed with an asterisk (*)
before the line. This points to the location of the edit pointer. Because the
error is on line nine of the procedure, you must move the edit pointer to
line nine. You can use the +<num> command to do this. If you redisplay
the procedure (with the I* command) after executing this command, the
asterisk (*) is now in front of the ninth line.

E: +9
*00BO ERR ednif

The d command deletes the line:

E:d
*00BO ENDIF

2-21



Chapter 2

Getting Started

You can now exit edit mode (by typinag and run the procedure:

E:q

Ready

B: run mtable

1*1=1 1*2=2 1*3=3 1*4=4 1*5=5
1*6=6 1*7=7 1*8=8 1*9=9 1*10=10

2*1=2 2*2=4 2*3=6 2*4=8 2*5=10
2*6=12 2*7=14 2*8=16 2*9=18 2*10=20

3*1=3 3*2=6 3*3=9 3*4=12 3*5=15
3*6=18 3*7=21 3*8=24 3*9=27 3*10=30

4*1=4 4*2=8 4*3=12 4*4=16 4*5=20
4*6=24 4*7=28 4*8=32 4*9=36 4*10=40

5#1=5 65*2=10 5*3=15 5*4=20 5*5=25
5*6=30 5*7=35 5*8=40 5*9=45 5*10=50

6*1=6 6*2=12 6*3=18 6*4=24 6*5=30
6*6=36 6*7=42 6*8=48 6*9=54 6*10=60

7*1=7 7*2=14 7*3=21 7*4=28 7*5=35
7*6=42 7*7=49 7*8=56 7*9=63 7*10=70

8*1=8 8*2=16 8*3=24 8*4=32 8*5=40
8*6=48 8*7=56 8*8=64 8*9=72 8*10=80

9*1=9 9*2=18 9*3=27 9*4=36 9*5=45
9*6=54 9*7=63 9*8=72 9*9=81 9*10=90

Ready
B:

2-22



Chapter 2

Getting Started

The table looks pretty good now, but it needs a header. To add the header,
re-enter edit mode and display the procedure:

B: e mtable
PROCEDURE mtable

*0000
E:I*
*0000
0012
0020
0024
003A
0048
005E
0098
00BO
00B4
00C8
00CE
00D6
00EA
00FO0
E:

DIM a,b:INTEGER

DIM a,b:INTEGER
a:=1
PRINT
WHILE a<10 DO
b:=1
WHILE b<=10 DO
PRINT a; “**“; b; “=*; a*b; TAB(MOD(b,5)*13)
IF POS>55 THEN PRINT
ENDIF
b:=b+1
ENDWHILE
PRINT
a:=a+l
ENDWHILE
END

Now, move the edit pointer to the first PRINT statement, and insert a line
to print a header:

E: +2

*0020 PRINT

E: print tab(13); “Multiplication Tables”
*0046  PRINT

E:

Important: Instead of using the +<num> command, you could enter a
carriage return twice.

If you list your program again, the new line is now the third line of
your procedure:

E:I*
0000 DIM a,b:INTEGER
0012 a:=1

0020  PRINT TAB(13); “Multiplication Tables”
*0046 PRINT

004A  WHILE a<10 DO

0060 b:=1

0116 END

2-23



Chapter 2

Getting Started

Line Numbers and the
GOTO Statement

2-24

Now when you run this procedure, your table will have a header.

You should experiment with the edit commands until you feel comfortable
with them. This makes creating and editing your procedures much easier.

As mentioned before, the listing Basic displays is not in the exact format as
the input. There is a space between the I-code address and the actual
procedure. This is reserved for line numbers.

Although line numbers are required in many versions of BASIC,

Microware BASIC does not require them. Line numbers must be positive
whole numbers in the range of 1 to 32767. They do not need to be used for
every line. They are generally used with a GOTO or GOSUB statement.

The GOTO statement transfers control unconditionally to the specified
line. For example:

PROCEDURE gotodemo
PRINT “This is a GOTO example”
GOTO 10
PRINT “This line will never be printed”
10 PRINT “It works but it's dangerous”
END

As you can see, a GOTO statement could cause certain parts of a
procedure’s code to be excluded from execution. There are generally better
ways of obtaining the same results without ever using a GOTO statement.

The use of the GOSUB statement is discussed in detail in Chapter 3.

Important: If at all possible, do not use line numbers or the GOTO
statement. Your procedures will be shorter, faster and easier to edit. There
is less chance of error. If you must use a GOTO statement, use it sparingly
and always document the code with a comment.



Putting It All Together

Chapter 2

Getting Started

With the various control statements and editing commands presented in
this chapter, you should be able to write some fairly advanced procedures.

For example, the following program was written using just what you have
learned in this chapter:

PROCEDURRultable
DIM less:BOOLEAN
DIM answer$:STRING[1]
DIM a,b,c:INTEGER
PRINT “Type your name”
INPUT name$
PRINT “Hi, “; name$; “! *;
PRINT “Would you like to print a multiplication table?”
PRINT “Type y for yes. Type any other key for no.”
INPUT answer$
IF answer$="y” THEN
PRINT “What is the number you want to multiply?”
PRINT “(please specify a number between 1 and 100)”
INPUT a
PRINT “What is the range of the multiplication table?”
PRINT “(type 2 numbers between 1 and 50 separated by a space)”
INPUT b,c
WHILE b=c DO
PRINT “Please specify two different numbers for the range.”
INPUT b,c
ENDWHILE
PRINT “Thank you, “; name$
count=1
REPEAT
PRINT b; “**; a; “ =" b*a,
IF POS>55 THEN PRINT
ENDIF
IF b>c THEN b:=b-1
less=FALSE
ELSE
less=TRUE
b:=b+1
ENDIF
UNTIL b=c+1 AND less OR b=c—1 AND NOT(less)
ELSE PRINT “Your loss, “; name$
ENDIF
END

2-25



Introduction

Arrays

Chapter

Program Construction:
Complex Data Types and Subroutines

This chapter discusses the following complex data types and subroutines
that you can use with Microware BASIC:

= arrays
= TYPE declarations

= external files

= subroutines

= command line parameters
= formatted output

An array is an ordered sequence of data tyfesarray may be one, two,
or three dimensional.

= A vector is a one-dimensional array.
= Atableis a two-dimensional array.
= A matrix is a three-dimensional array.

The size of an array depends on the number of elements in each dimension
and the size of each elemenhe array size is declared with a statement.

The syntax for declaring a vector array is as follows:
DIM <array name>(<rows>) : <DATA TYPE> [<num>]

For example, the following line declares the vector array naNesaes
has 80 string elementSsach element is 30 characters:

DIM Names(80) : STRING [30]
The syntax for declaring a table array is as follows:
DIM <array name>(<rows>,<cols>) : <DATA TYPE> [<num>]

The following line declares the table array, PHONEBOOK, with the two
dimensions of 80 rows and 5 columns of STRING elemé&atsh element
is 30 characters.

DIM Phonebook(80,5): STRING [30]

3-1



Chapter 3

Program Construction:

Complex Data Types and Subroutines

3-2

The syntax for declaring a matrix array is as follows:
DIM <array name>(<rows>,<cols>,<depth>) : <DATA TYPE> [<num>]

The following line declares the matrix array, Route, with three dimensions
of 5 rows, 5 columns, and 5 depth INTEGER elemdfash element is
25 integers:

DIM Route(5,5,5) : INTEGER [25]
Like variables, you must initialize each array before you use it.
The following procedure initializes Phonebook to null values:

PROCEDURIgit

DIM Phonebook(80,5): STRING [30]
DIM x,y : INTEGER
FOR x:=1TO 80

FORy:=1TO5

Phonebook(x,y) ="

NEXT y
NEXT x
END

You should initialize numeric array elements to zero in the same manner.

Once an array is initialized, it can be loaded in various wiys simplest
way is to assign individual element’s values by an assignment statement
which references the specified element:

Phonebook(1,1) :=“Larry Crane”
Phonebook(1,2) := “unlisted”



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Although this is simple, it is extremely time consumiimgtead, you can
use a looping structure and the INPUT statement to load the array:

PROCEDUREddphone
DIM Phonebook(80,5):STRING[30]
DIM x,y:INTEGER
DIM done:BOOLEAN
DATA “NAME",“PHONE",“ADDRESS",“CITY, STATE",“ZIP CODE"
done:=FALSE
x:=1
WHILE NOT(done) AND x<=80 DO
FORy=1TO5
READ prompt$
PRINT “ENTER ”; prompt$
INPUT Phonebook(x,y)
NEXT y
INPUT “If finished, type "“done™, otherwise <return>." flag$
IF flag$="done” THEN
done:=TRUE
ELSE
X:=x+1
ENDIF
ENDWHILE
END

In this procedure, the DATA and READ statements are UdselREAD
statement reads sequentially from the DATA statements outpWh&n

the list is exhausted, it starts reading from the beginning of the list again.
In this case, Addphone uses the READ statement to change prompts for
each element of the array.

For more information on the DATA and READ statements, refer to the
appropriate reference section.

Notice the INPUT statement following the FOR..NEXT structure:

INPUT “If finished, type "done™, otherwise
<return>.” flag$

This INPUT statement prints out the character string instead of the regular
question mark?) prompt.This eliminates an extra PRINT statement.

3-3



Chapter 3

Program Construction:

Complex Data Types and Subroutines

The TYPE Declaration

External Files

3-4

While the Addphone procedure is adequate for storing names and phone
numbers, an array of varying data types and sizes is more efflai¢ing
Phonebook array, each element is thirty characters long, regardless of the
use of the fieldA phone number field rarely needs to be greater than
twenty digits.A zip code can be held in nine.

By using the TYPE declaration, BASIC creatsgr-defined data typeA.
user-defined data type may consist of any of combination of the five basic
data types, arrays, and other user-defined data tiypegxample:

TYPErec=street:STRING[30];cityst: STRING[30];zip:STRING[9]
TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
DIM Phonebook(80) : ENTRY

This example is functionally the same array as in Addphdoeever, it is
smaller and easier to acceBy.labeling each field with a descriptive
name, there is no doubt as to what is stored there.

Each field within an element is referred to by the array name and the
number of the element, followed by a period, followed by the field name
(or names each separated by a period):

Phonebook(32).address.zip :=50311

Once you have defined and accessed variable length records, you need to
save them for future us€he current Addphone program only holds the
memory of the phone number while it is running.

To save the input information, you must open an external file. You can
then place information in this external file.

0OS-9 supports two types of files:

= Sequential fileshold records containing ASCII characterbere can be
any number of characters within a recarbere can be any number of
records in a file (within the limits of your diskrecords are separated
by a carriage return.

= Random access filesontain records that store data in the same manner
as BASIC,; in binary. There are no carriage returns to indicate the end of
a recordRecords must be of a fixed siZéhere may be any number of
records in the file (within the limits of your disk).



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Sequential Files

Sequential files are generally used for text files because of the way data is
accessedlo store data in a sequential file, BASIC supports two
commandsREAD and WRITE.

» The READ command reads characters from a file until it encounters a
carriage return.

« The WRITE command sends each character in the record to the file and
then sends a carriage return to indicate the end of record.

Sequential files must be read one record at a time, starting from where the
file pointer is positionedBecause of the way data is stored in sequential
files, the only way to position the file pointer is to read or write a record.

To access the third record of a sequential file, you must either read the first
two records or rewrite them to place the file pointer at the beginning of the
third recordIf you were to rewrite the first record with a new record that is
larger than the original, you will also write over the beginning of the

second recorddbviously, this could cause many problems.

To effectively edit sequential files, you must use a text editor (word
processor, etc.).

Random Access Files

To store data in a random access file, BASIC supports two commands:

= The PUT command puts a record in the specified place in your file.
= The GET command retrieves the record.

The PUT and the GET statements have the same syntax:

PUT <path no. var> <data struct>
GET<path no. var> <data struct>

You can access data elements in a random access file individunly.

BASIC functions SEEK and SIZE can be used together to locate and place
the file pointer at the beginning of any elemdifitough proper use of

these functions, you can GET the record you want or PUT any record
where you want it.

3-5



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Creating Files

Before you can access a file, you must first crealfiehi. syntax of the
CREATE statement is as follows:

CREATE# <int or byte var> ,“ <path> ": <access mode>

For example, the following command creates thedtitefile  in the
/hO/USR/ELLEN directory:

CREATE#A “/hO/usr/ellen/datafile”: WRITE

This statement creates the specified fil@afile ) and opens a path
number to access ithe CREATE statement assigns a path number to a
variable.The variable must be either an INTEGER or BYTE data type.
The access mode may be any of the following:

Access mode: Description:

WRITE Only allows you to send (WRITE/PUT) data to the file.

UPDATE Allows you to send and receive data (WRITE/PUT and READ/GET).

EXEC Stores machine language code to be executed. It is rarely used
except by advanced BASIC programmers.

When a file is created, it has a length of zéfrexpands automatically as
you send data to it.

Closing Files

When you open a path to a file, you must closdatice the line at
the end:

CLOSEHfile

The CLOSE statement closes the specified path nuiibeer close a path
that you did not open, unless absolutely required.

A New Phonebook Example

The following procedure creates a random access file to hold Phonebook
recordslt assigns the prompted values to the individual Phonebook data
fields one at a timdt places the entire data structure into the file at

one time.

3-6



Chapter 3

Program Construction:
Complex Data Types and Subroutines

PROCEDUREhonebook
TYPE rec=street:STRING[30];cityst: STRING[30];zip: STRING[9]
TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
DIM Phonebook : ENTRY
DIM file : INTEGER
CREATE #file, “phonebook”: UPDATE
PRINT “Enter the information asked for by the prompt”
PRINT “If information not available, hit <return>"
REPEAT
INPUT “name: ", Phonebook.name
INPUT “phone number: ", Phonebook.phone
INPUT “street address: ", Phonebook.address.street
INPUT “city, state: ", Phonebook.address.cityst
INPUT “zip code: ", Phonebook.address.zip
PUT #file, Phonebook
PRINT “If finished, type "done™.”
INPUT “Otherwise hit the <return> ", done$
UNTIL done$ = “done”
CLOSE #file
END

This works if the Phonebook file does not yet exisiwever, trying to
CREATE an already existing file causes an error (#218).

To access an already existing file, use the OPEN statefe@nOPEN
statement has the same syntax as the CREATE statement:

OPEN <int or byte var> ,* <path> ": access mode

There are five access modes that the OPEN statement uses:

Access mode: Description:

READ Reads data from a file.

WRITE Writes data from a file.

UPDATE Allows you to read and write to a file.

EXEC Looks for and stores your file in your execution directory.
DIR Opens a directory for read only.

You can OPENM file in more than one mode, if the combination is valid.
For example:

OPEN#file, “example™: READ + EXEC

Important: DIR and either WRITE or UPDATE causes an emr@aD+
WRITE is the same as UPDATE.

3-7



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Using A Random Access File

To illustrate the access capabilities of random access files, examine
this procedure:

PROCEDUREhonebook
TYPE rec=street:STRING[30];cityst: STRING[30];zip: STRING[9]
TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
DIM Phonebook : ENTRY
DIM file,record : INTEGER
DIM flag : BOOLEAN
flag = TRUE
ON ERROR GOTO 100
CREATE #file, “phonebook”: UPDATE
flag = FALSE
100 IF flag THEN OPEN #file, “phonebook”: UPDATE
ENDIF
ON ERROR
REPEAT
PRINT “Would you like to add or access entries?”
PRINT “Or are you finished for now?”
INPUT “Type ™add™, ™access™ or "done™.”, answer$
IF answer$ = “add” THEN
SEEK #file, FILSIZ (#file)
PRINT “If information not available, hit <return>"
REPEAT
INPUT “name: ", Phonebook.name
INPUT “phone number: ", Phonebook.phone
INPUT “street address: ", Phonebook.address.street
INPUT “city, state: ", Phonebook.address.cityst
INPUT “zip code: ", Phonebook.address.zip
PUT #file, Phonebook
PRINT “If finished, type "done™.”
INPUT “Otherwise hit the <return> ", done$
UNTIL done$ = “done”
ELSE
IF answer$ = “access” THEN
REPEAT
INPUT “What number record would you like?”, record
SEEK #file, SIZE (Phonebook) * (record — 1)
GET #file, Phonebook
PRINT “name: " Phonebook.name
PRINT “phone number: ", Phonebook.phone
PRINT “street address: ", Phonebook.address.street
PRINT “city, state: ", Phonebook.address.cityst
PRINT “zip code: ", Phonebook.address.zip
PRINT “If finished, type "™done™.”
INPUT “Otherwise hit the <return> ", done$
UNTIL done$ = “done”
ENDIF
ENDIF
UNTIL answer$ = “done”
CLOSE #file

3-8



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Important: The BASIC statement ON ERROR GOTO gives control to the
specified line if an error occurs this case, it bypasses the problem of
recreating an existing file:

flag = TRUE
ON ERROR GOTO 100
CREATE #file, “phonebook”: UPDATE
flag = FALSE
100 IF flag THEN OPEN #file, “phonebook”: UPDATE
ENDIF

Normally, when an error occurs, the procedure terminates, and BASIC
changes to debug mod& FALSE value is assigned to flag between the
CREATE and IF..THEN OPEN structurEhis assures that only one of the
two access statements (OPEN or CREATE) is executed.

The ON ERROR without the GOTO effectively turns off the previous ON
ERRORstatementThis is important, because any other error that might
occur would otherwise be routed to line 100.

Because you can use this procedure to both read and write to the
phonebook file, you must access the file in UPDATE mode.

By prompting for one of three conditions (add, access, or done), you can
channel control to any of these conditioBg.placing this control structure
within a REPEAT loop, you may add and access entries in the same
sessionBy adding REPEAT loops within add and access sections of the
code, you may add or access as many records as desired.

The SEEK statement allows access to the recordee add loop, the file
pointer is moved to the end of file with the following command:

SEEK#file, FILSIZ (#file)

The SEEK command positions the file pointer directly after the specified
number of bytesThe FILSIZ function returns the size of the file specified
by its pathConsequently, by using both together, the file pointer is
positioned at the end of file.

In the access loop, the SEEK command positions the file pointer at the
beginning of the user-specified recofer simplicity, this procedure uses
numbers to specify recordférst record, second record, etcThe BASIC
function, SIZE, returns the size of the specified data struddyre.

multiplying this size by one less than the desired record, the file pointer is
correctly positioned:

SEEKH#file, SIZE (Phonebook) * (record — 1)

3-9



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Subroutines The phonebook procedure is unnecessarily comiénen you repeatedly
use a portion of a procedure, place it suaroutine. Generally,
subroutines clarify code or avoid repeating the same code throughout a
procedureln the previous program, you can place the add and access loops
in subroutines to improve clarity.

The GOSUB statement accesses subroutirtes syntax for this structure
is as follows:

GOSURline#>

<line#> (subroutine)
RETURN

The GOSUB statement unconditionally passes control to the specified line.
Basic continues to execute sequentially from that point until the RETURN
statement is encounterddontrol is then returned to the line immediately
following the GOSUB statement.

Basic supports a related statement that provides better use of subroutines:
ON..GOSUB.The syntax for this statement is as follows:

ON <int expr> GOSUB {<line#>, <line#>}

<line#> (subroutine)
RETURN

<line#> (subroutine)
RETURN

ON..GOSUB evaluates thént expr- and transfers control to the
corresponding line number in the list following GOSUWRBhe integer is
greater than the number of line numbers in the list, no subroutine is
executedWhen used with a previous input statement, ON..GOSUB can
run menu-type subroutines.

3-10



Chapter 3

Program Construction:
Complex Data Types and Subroutines

The following is the Phonebook procedure written with subroutines.

PROCEDURE Phonebook
TYPE rec=street:STRING[30];cityst: STRING[30];zip: STRING[9]
TYPE ENTRY=name:STRINGJ[30]; phone:STRING[20]; address:rec
DIM Phonebook:ENTRY; flag:BOOLEAN; file,answer,record:INTEGER
flag := TRUE
ON ERROR GOTO 100
CREATE #file, “phonebook”: UPDATE

flag := FALSE
100 IF flag THEN OPEN #file, “phonebook”: UPDATE

ENDIF

ON ERROR

REPEAT
PRINT “TYPE: "1™ for add new entries"
PRINT "  “2™ for access previous entries”
PRINT “ ™3™ for exit procedure”

INPUT answer

ON answer GOSUB 200,300
UNTIL answer = 3
CLOSE #file
END

200 SEEK #file, FILSIZ (#file)

REPEAT
PRINT "If information not available, hit <return>*
INPUT "name: “ Phonebook.name

INPUT "phone number: “,Phonebook.phone
INPUT "street address: “,Phonebook.address.street
INPUT "city, state:  “,Phonebook.address.cityst
INPUT "zip code: “,Phonebook.address.zip
PUT #file, Phonebook
PRINT "If finished, type “"done*”."
INPUT "Otherwise hit the <return> “,done$

UNTIL done$="done"

RETURN

300 REPEAT

INPUT "What number record would you like?“,record
SEEK #file,SIZE(Phonebook)*(record —1)
GET #file,Phonebook
PRINT "name: “,Phonebook.name
PRINT "phone number: “,Phonebook.phone
PRINT "street address: “,Phonebook.address.street;
PRINT "city, state:  “,Phonebook.address.cityst
PRINT "zip code: “ Phonebook.address.zip
PRINT "If finished, type “"done"”.”
INPUT "Otherwise hit the <return> “,done$

UNTIL done$="done"

RETURN

3-11



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Calling Procedures Procedures can often be used by other procedBite3iC allows
procedures to call each other, and a procedure can call TiselRUN
statement calls an external proced®&SIC looks first in the workspace,
then the data directory, and finally the execution directbityis found
outside the workspace, BASIC loads and ruriBhie RUN statement
syntax is as follows:

RUN<proc name> [(<param>) {,<param>}]

The RUN statement can include parameters (a list of values) to pass to the
called procedurelhe called procedure must have a PARAM statement

with variables of the same size and data type as the values passed.
Parameters may be any type of data structure.

The syntax for the PARAM statement is as follows:
PARAM<declaration sequence> . <type>

If a parameter is a constant or an expression, it is pagsealue. This
means the called procedure can change it, but the changes are not returned
to the calling procedure

If a parameter is a variable, array, or data structure, it is passed by
reference This means that any changes made to the value of the parameter
are returned to the calling procedus&TE data types may only be passed

by reference.

Commas (,) separate items in the declaration sequeacexample:
PARAM,b: INTEGER

You can declare multiple data types on the same line by using semicolons
(;). For example:

PARAM,b: INTEGER,; c,d: REAL; listing(10): BYTE

3-12



Chapter 3

Program Construction:
Complex Data Types and Subroutines

The following example passes an array of integers by referErample
creates the array and passes it to gmim prints the array and passes it
back to exampleaxample passes it to reverse which reverses the order of
the arrayThe reversed array is passed back to examppleis run once

more to validate the reversal process.

PROCEDUR&xample
DIM a,intlist(10): INTEGER
FORa=1TO 10
intlist(a) = a
NEXT a
RUN prin(1,10,intlist)
RUN reverse(1,10,intlist)
RUN prin(1,10,intlist)
END
PROCEDURE prin
PARAM a,b,prin(10): INTEGER
DIM c: INTEGER
FORc=aTOb
PRINT prin(c);“ ";
NEXT ¢
PRINT
END
PROCEDURE reverse
PARAM a,b,intlist(10):INTEGER
DIM ¢, temp(10): INTEGER
FORc=bTOaSTEP -1
temp(b+1—c) = intlist(c)
NEXT ¢
intlist = temp
END

The output should look like this:

12345678910
10987654321

3-13



Chapter 3

Program Construction:
Complex Data Types and Subroutines

Command Line Parameters

3-14

Parameters may also be passed to the main procedure of a BASIC
program A PARAM statement must also appear in the main procedure.

One major difference between passing parameters between procedures and
passing parameters to the main procedure is that parentheses are not
required to enclose the parameters passed to the main prodexfure.

example, the following two statements pass parameters to a main
procedure from the shell.

$ filter —z=myfiles —-p=~ —I=11
$ basic makdoc —z=bman 12

A parameter passed to a procedure is determined to be either a string or
numeric argument by the list of parameters given in the PARAM
statementThe parameters may be expressions that result in the correct
data typeFor example, the following statement passes the numeric
argument 15 and the string argument thisthat:

$ filter 11+4 “this” + “that™

Important: If a string parameter is in expression format (as above) or
could be construed as a numeric parameter (12 or 1.5), the parameter must
be within double quotes.

If you run a program from BASIC, you must use parentheses as if the
procedure was being called from another procedroeexample:

run filter(“~z=myfiles”, “—p=~", “—I=11")

Optional Parameters

A parameter passing error only occurs if a parameter is accessed that has
not been passed to a procediNe.error occurs, however, if too few or too
many parameters are passed as long as the missing parameters are not
accessedlhe variables expecting parameters are not initialized if no
matching parameters are passédnsequently, you should create some

sort of parameter handling subroutine for procedures receiving fewer
parameters than expected.

By adding a command line parameter to the Phonebook procedure, you can
create a help message for a first time user and an immediate access to
records.The key to this type of strategy is finding whether a parameter has
been passed, and if so, which one.

A second variable (strl) is declared to trap the paranteiginitialized to
the string oopdf the parameter is not passed, the ON ERROR routine
passes control to the paramcheck routiha.parameter is passed, strl is
set to pstrl and the paramcheck routine is run.



Chapter 3

Program Construction:
Complex Data Types and Subroutines

In either case, paramcheck examines &ylisolating the parameter
checking, the program keeps its integrity and allows for easy maintenance.
A question mark option (—?) is added to print a help mes3agehelp
message explains how to use the procedure.

PROCEDURE Phonebook
PARAM pstrl:string
TYPE rec=street:STRING[30];cityst: STRING[30];zip:STRING[9]
TYPE ENTRY=name:STRING[30]; phone:STRING[20]; address:rec
DIM Phonebook:ENTRY; flag:BOOLEAN; file,answer:INTEGER
DIM strl:string
record = 0
flag := TRUE
strl="oops”
ON ERROR GOTO 5
strl=pstrl
5 RUN paramcheck(strl,answer,record)
ON ERROR
ON ERROR GOTO 100
CREATE #file, “phonebook”: UPDATE
flag := FALSE
100 IF flag THEN OPEN #file, “phonebook”: UPDATE
ENDIF
ON ERROR
REPEAT
IF answer < 1 THEN
PRINT “TYPE: ™1™ for add new entries”

PRINT “ ™2™ for access previous entries”
PRINT “ ™3™ for exit procedure”
INPUT answer

ENDIF

ON answer GOSUB 200,300
UNTIL answer = 3

CLOSE #file
END
200 SEEK #file, FILSIZ (#file)
REPEAT
PRINT “If information not available, hit <return>“
INPUT “name: " Phonebook.name

INPUT “phone number: ”,Phonebook.phone
INPUT “street address: ",Phonebook.address.street
INPUT “city, state:  ”,Phonebook.address.cityst
INPUT “zip code: ",Phonebook.address.zip
PUT #file,Phonebook
PRINT “If finished, type "“done™.”
INPUT “Otherwise hit the <return> ”,done$

UNTIL done$="done”

answer =0

RETURN

3-15



Chapter 3

Program Construction:

Complex Data Types and Subroutines

3-16

300 REPEAT
IF record =0 THEN
INPUT “What number record would you like?”,record
ENDIF

SEEK #file,SIZE(Phonebook)*(record —1)
GET #file,Phonebook
PRINT “name: ”,Phonebook.name
PRINT “phone number: ",Phonebook.phone
PRINT “street address: ”,Phonebook.address.street
PRINT “city, state:  ”,Phonebook.address.cityst
PRINT “zip code: ",Phonebook.address.zip
PRINT “If finished, type "done™.”
INPUT “Otherwise hit the <return> ”,done$
record =0
UNTIL done$ ="done”
answer =0
RETURN
PROCEDURE Paramcheck
PARAM str1:STRING; answer,record:INTEGER
IF strl = “-?" THEN
PRINT “Syntax: phonebook [<opt>]”
PRINT “Function: This is a little black book for phone numbers.”
PRINT “<opt>=-? prints this message.”
PRINT “ -a add mode allows you to add phone numbers.”
PRINT “ —r=<rec> specifies the phone number desired.”
PRINT * <rec> = the record number of the phone/address.”
STOP
ELSE
IF strl = “—a” THEN
answer = 1
ELSE
IF LEFT$(str1,3)="-r=" THEN
record = VAL(MID$(str1,4,(LEN(str1)-3)))
answer = 2
ELSE
answer =0
ENDIF
ENDIF
ENDIF
END



Formatted Output: The
PRINT .. USING Statement

Chapter 3

Program Construction:
Complex Data Types and Subroutines

BASIC has a powerful output editing capability for generating reports and
other applications where formatted output is requifée. output editing
uses the PRINT..USING statement:

PRINT [<path#>] USING <str expr> , <output list>

The string expression is evaluated and used as a format specifi¢ai®n.
contains specific formatting directives for each item in the outpuls.
<path#> is optional and can redirect the output to the

corresponding device.

Important: Blanks are not allowed in format strings!

The items in the output list can be constants, variables, or expressions of
any basic typeAs each output item is processed, it is matched with a
specification in the format lisThe type of each expression result must be
compatible with the corresponding format specificatlbthere are fewer
format specifications than items in the output list, the format specification
list is repeated again from its beginning as many times as necessary.

A format string has one or more format specifications separated by
commasThere are two kinds of specifications:

= those that control output editing of an item from the output list

= those that cause an output function by themselves (such as tabbing
and spacing)

There are six basic output editing directiiéach has a corresponding
one-letter identifier:

Identifier: Description:

R Real Format

Exponential Format

Integer Format

Hexadecimal Format

String Format

| | T — | m

Boolean Format

The letter is followed by a positive constant number calledieleewidth .
This number indicates the exact number of columns in which to print the
output.It must allow for the datand“overhead” character positions such
as sign characters, decimal points, exponentsTk&cfield width must be
between 1 and 255.

3-17



Chapter 3

Program Construction:
Complex Data Types and Subroutines

3-18

Some formats have additional mandatory or optional parameters that
control subfields or select editing optioReal and exponential formats
use thdraction field to specify the number of digits to the right of the
decimal pointThe fraction field is separated from the field width by a
decimal pointFor example, a field width of 10 and a fraction field of 6 is
represented by “10.6.”

All formats can use the justification optioFhis option specifies whether

the output is to be centered, left, or right justified within the output field.
Fields are commonly right-justified in reports because it arranges them into
columns with decimal points aligned in the same posititie. symbols

used in the justification specifications are:

< (left), > (right), ~ (center).
In the previous prin procedure, the following print statement was used:
PRINT prin(c);"";

The extra space was added to separate the integers being pistedar
result can be obtained by using the PRINT..USING statement:

PRINT USING “I3>" prin(c);

This formats each integer in a three space print field Tt®.integers are
right justified (>).You should use some caution when formattiipile a
leading sign is not printed (when positive), space for it must be allowed.
I3> only prints two digit integers.

A full explanation of the PRINT..USING statement and each of the format
types can be found in the reference section of this manual.



Chapter 3

Program Construction:
Complex Data Types and Subroutines

NOTES

3-19



General Execution
Performance of BASIC

Chapter

Program Optimization

When you run your procedures, Microware’s BASIC compiler makes

multiple passes through the code. The compiler produces a compressed and
optimized low-level I-code for execution. Compared to other BASIC
languages, program storage is greatly decreased and execution speed

is increased.

High-level language interpreters have a general reputation for slowness.
This is partly because traditional BASIC interpreters compile from text as
they run, and other BASIC interpreters must perform table-searching
during execution.

Microware BASIC, however, is kept at a powerful level so that there is

little performance difference between the execution of I-code and straight
machine-language instructions. Instead, a single, fast, I-code interpretation
often results in many MPU instruction cycles (such as execution of
floating-point arithmetic operations). Also, BASIC Icode instructions that
reference variable storage, statements, labels, etc., contain the actual
memory addresses, so no table searching is ever required. In addition,
BASIC fully exploits the power of the 68000’s instruction set which was
optimized for efficient execution of compiler-produced code.

BASIC I-code is interpreted. Therefore, a variety of entry time tests,
run-time tests, and development aids are available to help in program
development; aids not available on most compilers:

= The editor reports errors immediately when they are entered.

= The debugger allows debugging using the original program source
statements and names.

= The I-code interpreter performs run-time error checking of things such
as array bound errors, subroutine nesting, arithmetic errors, and other
errors that are not detected (and usually crash)
native-compiler-generated code.

4-1



Chapter 4

Program Optimization

Optimum Use of Numeric
Data Types

Looping Quickly

4-2

BASIC includes several different numeric representations (REAL,
INTEGER, and BYTE) and performs automatic type conversions between
them. You can easily write expressions or loops that take at least ten times
longer to execute than is necessary. Some BASIC numeric operators (+, —,
*, ) and control structures (FOR..NEXT) include versions for both REAL
and INTEGER values. The INTEGER versions are much faster and may
have slightly different properties (for example, when you divide INTEGER
values, the remainder is discarded). Converting data types takes time, so
expressions whose operands and operators are of the same type are
more efficient.

INTEGER operations are faster because they generally have corresponding
68000 machine-language instructions. Overall program speed increases
and storage requirements decrease if INTEGERS are used whenever
possible. INTEGER arithmetic operations use the same symbols as REAL,
but BASIC automatically selects the INTEGER operations when working
with an integer-value result. Only if all operands of an expression are of
types BYTE or INTEGER will the result also be INTEGER.

Sometimes you can get similar or identical results in a number of different
ways at various execution speeds. For example, if the variable value is an
integer, value*2 is a fast integer operation. However, if the expression is
value*2., the value 2. is represented as a REAL number, and the
multiplication is a REAL multiplication which also requires that the

variable value must be transformed into a REAL value, and finally the
result of the expression must be transformed back to an INTEGER value if
you assign it to a variable of that type. Therefore, a single decimal point
slows down this operation by about ten times.

When Basic identifies a FOR..NEXT loop structure with an INTEGER
loop counter variable, it uses a special integer version of the FOR..NEXT
loop. This is much faster than the REAL-type version and is generally
preferable. Other kinds of loops also run faster if INTEGER type variables
are used for loop counters.

When writing program loops, remember that statemasidethe loop

may be executed many times for each single execatitsidethe loop.

Thus, any value which can be computed before entering a loop increases
program speed.



Optimum Use of Arrays and
Data Structures

The PACK Command

Eliminating Constant
Expressions and
Sub-Expressions

Fast Input and Output
Functions

Chapter 4

Program Optimization

BASIC internally uses INTEGER numbers to index arrays and complex
data structures. If the program uses subscripts that are REAL type variables
or expressions, BASIC converts them to INTEGER before they can be
used. This takes additional time, so use INTEGER expressions for
subscripts whenever you can.

Important: The assignment statement (LET) can copy identically sized
data structures.ET is much faster than copying arrays or structures
element-by-element inside a loop.

The PACK command produces a compressed version of a BASIC
procedure. Depending on the number of comments, line numbers, etc.,
programs execute from 10% to 30% faster after being packed. Minimizing
use of line numbers will even speed up procedures that are unpacked.

Consider the expression:
X := x+SQRT(100)/2

It is exactly the same as the expression:
X = X+5

The sub-expressidBQRT(100)/2 consists of constants only, so its result
does not vary regardless of the rest of the program. But every time the
program is run, the computer must evaluate it. This time can be significant,
especially if the statement is within a loop. You should calculate constant
expressions or sub-expressions while writing the program.

Reading or writing data a line or record at a time is much faster than one
character at a time. Also, the GET and PUT statements are much faster
than READ and WRITE statements when dealing with disk files. This is
because GET and PUT use the exact binary format used internally by
BASIC. REAQ WRITE, PRINT, andINPUT must perform binary-to-ASCII or
ASCII-to-binary conversions.

4-3



Chapter 4

Program Optimization

Professional Programming
Techniques

4-4

You can make a program faster by using efficient algorithms. You can use
algorithms found in most standard BASIC and PASCAL books with little
or no adaptation.

You should use a well-structured programming style that produces
efficient, reliable, readable, and maintainable software. BASIC generates
optimized code for the 68000 to execute. This code is currently the most
powerful 16-bit processor in existence. A computer can only execute what
it is told to execute. No language implementation can make up for an
inefficient program. An inefficient program is evidence of a lack of
understanding of the problem. The result is likely to be hard to understand
and hard to update if program specifications change. The identification of
efficient algorithms and their clear, structured expression is indicative of
professionalism in software design.



Section

BASIC Reference Guide

This section of the manual describes:

= BASIC'’s four command modes:

Mode: Description:

SYSTEM Used for executing system commands.
EDIT Used for creating/editing procedures.
EXECUTION Used for running procedures.

DEBUG Used for testing procedures for errors.

Certain commands in each mode will change BASIC’s mode. The
following is a graphic representation of which commands accomplish this
and what mode they are carried out in.

BASIC Mode Changes
0S-9 SYSTEM MODE EDIT MODE
$ CHD + c
<« <eof> CHX = d
<« BYE EDIT +— | <> l
DIR KILL <space> r
LIST LOAD | «—1 g S
MEM PACK escape
BASIC —|——>| RENAME
SAVE PR
DIGITS RUN DEBUG MODE
$ TRON
- TROFF
EXECUTION MODE Q
CUTION MO DEG/RAD DIR
END PAUSE 4——> | BREAK CONT
<crtl E> ERROR ——> | LET STATE
RUNB STOP <rtlc> 44— PRINT
BASIC <« BYE L LST
AUTORUN ———— | otep




Chapter 16

Batch Processing Overview

Syntax Notation Used in System Command Descriptions
Individual descriptions of the available commands in each mode follow. In
order to precisely describe their formats, the following syntax notation

is used.
Notation: Description:
[] Items in brackets are optional.
{1 Items in braces can be optionally repeated.
<procname> A procedure name
<pathlist> An OS-9 file name
<number> A decimal or hex number

= how to use the edit mode (the editor) to create or modify BASIC
procedures

= how to run a BASIC procedure

= symbolic debugging of programs

» data types and data structures

= expressions, operators and functions

= BASIC program statements and structure

« files and unified input/output

16-2



System Mode Commands

Chapter

System Mode

System mode includes commands to:

= save, load, and examine procedures
» interact with OS-9
= control the workspace environment

The following are the system commands:

$ BYE CHD/CHX DIGITS

DIR E/EDIT KILL LIST

LOAD MEM PACK RENAME
RUN SAVE

The BASICcommand interpreter processes system commands. The
command interpreter always identifies itself with the B: prompt. You
automatically enter the command interpreter when you start BASIC and
when you exit any other mode. You can enter commands in either upper or
lower-case letters.

Commands such as DIR, MEM, $, and BYE do not operate on specific
procedures, but they may have optional or required parameters. Commands
such as SAVE, LOAD, PACKKILL, and LIST can operate on a specific
procedure or oall procedures within the workspace.

If the command is used with a specific procedure name, the command is
applied to only that procedure. This example displays the procedure named
justin:

LIST justin
The asterisk is a special name that indicates all procedures in the

workspace. Therefore, if you enter the following command, all procedures
in the workspace are displayed:

LIST*

If you do not enter a name with the command cilreent working
procedureis used. The current working procedure is the procedure
specified for the last command. The DIR command prints an asterisk
before the current working procedure’s name. This allows you to check
which procedure is current.

5-1



Chapter 5

System Mode

5-2

If you have not yet given a name in any command, BASIC automatically
uses the name Program. Some commands require a file name and (one or
more) procedure names. They usually require that a greater-than sign (>)
precede the file name so that it is not mistaken for a procedure name. If
you omit the file name, the name of the (first) procedure is used.

Important: In this manual, the phragiée name means an OS-9 pathlist
which describes either a file or device.

Here are some examples:

SAVEtom bill >myfile
SAVE* big_file
SAVE tic tac toe (same as SAVE tic,tac,toe >tic)

The RUN and EDIT commands use only one procedure nhame, or the
current working name if a name is omitted. These commands change
BASIC’s mode by exiting the command mode and entering another mode.

Command: Description:
RUN Enters execution mode to run a procedure.
EDIT Enters edit mode to create or change a procedure.

Important: You cannot directly enter debug mode from system mode.



Chapter 5

System Mode

Shell Command

Syntax

$ [<text>]

Function

This command calls the OS-9 shell command interpreter to process an OS9
command or to run another program. Running the shell command does not
disturb BASIC or its workspace.

If the dollar sign ($) is followed by text, the shell is called to process the
text as a single OS-9 command line. After the command is executed,
BASIC is immediately re-entered.

If no text is specified, BASIC is suspended, and the OS-9 shell is called to
process multiple command lines individually entered from the keyboard.
BASIC regains control when an end-of-file character (usually escape) is
entered. The contents of the BASIC workspace are not affected. This is a
convenient way to temporarily leave BASIC to manipulate files or perform
other housekeeping tasks.

This command is the gateway from BASIC to OS-9. It allows access to
any OS-9 command or to other programs. It also permits creation of
concurrent processes and other real-time functions.

Examples
Command: Description:
B: $copy filel file2 Calls the 0S-9 copy command
B: $r68 sourcefile& Calls the assembler as a background task
B: $hasic fourier(20)& Starts another concurrent BASIC program

5-3



Chapter 5

System Mode

BYE (or <eof> character)

CHD/CHX

5-4

Exit Basic

Syntax

BYE

Function
BYE exits BASIC and returns to OS-9 or the program that called BASIC.

Any procedures in the workspace are lost if not previously saved. The
end-of-file character (usually the escape key) does the same thing.

Change Directories

Syntax

CHD<pathlist>
CHX <pathlist>

Function

CHDchanges the current OS-9 user data directory to the specified pathlist
which must be a directory file. BASIC uses the data directory to LOAD or
SAVE procedures.

CHXxchanges the current OS-9 user execution directory to the specified
pathlist which must be a directory file. The execution directory is used to
PACK or auto-load packed modules.

Example

CHD/d1/joe/games



DIGITS

DIR

Chapter 5

System Mode

Formats Numerical Output (Real Numbers)

Syntax

DIGITS [<number>]

Function

DIGITS controls the number of digits that are printed when REAL numbers
are output.

DIGITS also controls the precision of transcendental calculation. The
minimum precision is 1 digit to the right of the decimal point, and the
maximum precision is 15. If the result is not within this range (1 to 15
precision), the result is brought into range without error. When no
<number> is specified, DIGITS displays the current precision.

Example

PROCEDURBigitsdemo
DIM x: REAL
DIGITS 2
INPUT x
PRINT x
END
RUN Digitsdemo
? 44.9234692
44,

Display Directory of Workspace

Syntax

DIR [<pathlist>]

Function

DIR displays the name, size, and variable storage requirement of each
procedure presently in the workspace. The current working procedure has
an asterisk before its name. All packed procedures have a dash before their
name (see PACK). The available free memory within the workspace is also
given. If a pathlist is specified, output is directed to that file or device.

5-5



Chapter 5

System Mode

EDIT/E

KILL/KILL*

5-6

A question mark next to a data storage size means the workspace does not
have enough free memory to run that procedure.

Important: Do not confuse this command with the OS-9 dir command.
They have completely different functions.

Enter Edit Mode

Syntax

EDIT [<procname>]
E [<procnhame>]

Function
EDIT (E) exits system mode and enters edit mode. If the specified

procedure does not exist, a new one is created. See the next chapter for a
complete description of how edit mode works.

Examples

E newprog
EDIT newprog

Delete Procedure from Workspace

Syntax
KILL [<procname> {,<procname>}]
KILL*

Function

KILL deletes the procedure(s) specified by <procnamier: clears the
entire workspace. This process may take some time if there are many
procedures in the workspace.

Examples

KILL formulas
KILL progl, prog2, prog7



LIST/LIST*

Chapter 5

System Mode

Display Listing of Procedure

Syntax
LIST [<procname> {,<procname>}] [> <pathlist>]
LIST* [<pathlist>]

Function

LIST prints a formatted listing of one or more procedurss* prints a
formatted listing of all procedures in the workspace. The listing includes
the relative I-code storage addresses in hexadecimal format in the first
column. The second column is reserved for program line numbers (if line
numbers are used).

If a pathlist is given, the listing is output to that file or device. This option
is commonly used to print hard-copy listings of programs.

LIST prints on the OS-9 standard error path (#2) if no pathlist is given.
Important: If an asterisk (*) is used, the file name (<pathlist>) follows
immediatelywithouta greater-than sign (>) before it.
Examples

LIST* /p

LIST prog2,prog3 >/p
LIST prog5 >temp

5-7



Chapter 5

System Mode

LOAD Load Procedure into Workspace

Syntax

LOAD<pathlist>

Function

LoADIloads all procedures from the specified file into the workspace. As
procedures are loaded, their names are displayed. If any of the procedures
being loaded have the same name as a procedure already in the workspace,
the existing procedures are erased and replaced with the procedure

being loaded.

If the workspace fills up before the last procedure in the file is loaded, an
error (#32) is given. In this case, not all procedures may have been loaded,
and the one being loaded when the workspace became full may not be
completely loaded. You should KILL the last procedure, use the MEM
command to get more memory or KILL unnecessary procedure(s) to free
up space, and then LOAD the file again.

Example

LOADquadratics

MEM Display or Request Workspace Memory

Syntax

MEM<number>]

Function

MEMused without a number displays the present total workspace size in
(decimal) bytes. If a number is given, BASIC asks OS-9 to expand or
contract the workspace to that size. A hex value can be used if preceded by
a dollar sign. If MEM responds with What?, you either asked for more
memory than is available, tried to give back too much memory (there has

to be enough to store all procedures in the workspace), or gave an

invalid number.

5-8



Chapter 5

System Mode

Example

MEML8000

PACK/PACK* Pack Procedure

Syntax

PACK|[<procname> {,<procname>}] [> <pathlist>]
PACK* [<pathlist>]

Function

PACKcauses an extra compiler pass on the specified procedure(s). This
removes names, line numbers, non-executable statements, etc. The result is
a smaller, faster procedure(s) thahnotbe edited or debugged but can be
executed by BASIC or by the BASIC run-time-only program called RunB.

If a pathlist is not specified, the name of the first procedure in the list is
used as the file name. The packed file is stored in your execution directory.

The procedure is written to the file/device specified in OS-9 memory
module format suitable for loading in ROM or RAddtsidethe

workspace. BASIC automatically loads the packed procedure when you try
to run it later. Here is an example sequence that demonstrates packing a

procedure:

PACKsort Packs procedure sort and creates a file

KILL sort Kills procedure inside the workspace

RUN sort Run (sort is loaded outside of the workspace)
KILL sort Done; delete sort from outside memory

The last step does not have to be done immediately if you will be using the
procedure again later, but you should kill it when you are done so its
memory can be used for other purposes.

Important: The packed file cannot be loaded into the workspace later on
Always perform a regular SAVE before packing a procedure.

Example

PACKprocl,proc2 >packed.programs

5-9



Chapter 5

System Mode

RENAME

RUN

5-10

Rename a Procedure

Syntax

RENAMEprocname>,<new prochame>

Function

RENAMEhanges the name of a procedure. It can be used to allow two
copies of the same procedure in the workspace under different names.

Example

RENAMEnhisproc thatproc

Execute a Procedure

Syntax

RUN[<procname> [ ( <expr>, {<expr>})]]

Function

RUNexecutes the specified procedure. BASIC leaves system mode and
enters execution mode.

You can use a parameter list to pass expected parameters to the procedure.
This is generally used in the same way that a RUN statement inside a
procedure calls another procedure. The only restriction is that all
parameters must be constants or expressions without variables. See the
PARAM statement description.

The procedure called can be normal or packed. If the procedure is not
found inside BASIC’s workspace, BASIC calls OS-9 to attempt to LINK
to an external (outside the workspace) module. If this fails, BASIC
attempts to LOAD the procedure from a file of the same name.

Examples

RUNgetdata

RUN invert(“the string to be inverted”)
RUN power(12,354.06)

RUN power($32, sin(pi/2))



Chapter 5

System Mode

SAVE/SAVE* Write Procedure to an Output File

Syntax

SAVE[<procname> { <prochame>} [> <pathlist>]]
SAVE* [<pathlist>]

Function

SAVEWwrites the procedure(s) (or all procedures with SAVE*) to an output
file or device in source formasAvEis similar to the LIST command

except the output is not formatted and I-code addresses are not included. If
a pathlist is not specified, it defaults to the name of the first

procedure listed.

If a file of the same name already exists, SAVE prompts with
the following:

rewrite?

You may answer Y for yes which causes the existing file to be rewritten
with the new procedure(s); or N to cancel the SAVE command.

Important: If an asterisk (*) is used, the file name (<pathlist>) follows
immediatelywithouta greater-than sign (>) before it.
Examples

SAVEproc2 proc3 proc4 >monday.work

SAVE* newprogram

SAVE
SAVE >testprogram

5-11



Edit Mode Commands

Chapter

Edit Mode

You use the edit modéhg editor) to create or modify BASIC procedures.
To enter edit mode from system mode, use the EDIT (or E) command.

When you enter edit mode, the proraptis displayed. If you have used a

text editor before, you will find the BASIC editor similar to many others
except for these two differences:

= The editor is both string and line number oriented. Using line numbers
is optional, and you can correct text without re-typing the entire line.

= The editor is interfaced to the BASIC compiler and decompiler. This
lets BASIC perform continuous syntax error checking and allows
programs to be stored in memory in a more compact, compiled form.

The editor includes the following commands. Each command is described
in detail later in this chapter.

Command: Description:

<cr> Moves the edit pointer forward one line.
+[<number>] Moves the edit pointer forward.
—[<number>] Moves the edit pointer backward.
<space> <text> Inserts an unnumbered line.
<space> <line#> <text> Inserts or replaces a numbered line.
<line#> <cr> Finds a numbered line.

c Changes a string.

d Deletes a line.

[ Lists line(s).

q Quits editing.

r Renumbers line.

S Searches for string.

<esc> Quits editing.

6-1



Chapter 6

Edit Mode

How the Editor Works

6-2

BASIC programs are always stored in memory in a compiled form called
I-code (short forintermediate Code). I-code is a complex binary coding
system for programs that lies between your original source program and
the computer’s native machine language. I-code is relatively compact, can
be executed rapidly, and most importantly, can be reconstructed almost
back to the original source program. The editor is closely connected to the
compiler and decompiler systems within BASIC that translate source code
to I-Code and vice-versa.

When you enter or change a program line and press the return key, the
compiler instantly translates this text to the internal I-code form. When
BASIC displays program lines, it uses the decompiler to translate the
I-code back to the original source format. These processes are completely
automatic and do not require any special action on your part.

This technique has several advantages:

= |t allows the text editor to report many (syntax) errors immediately so
you can correct them instantly.

= The I-code representation of a program is more compact (by about 30%)
than its original form. This allows you to have larger programs in any
given amount of available memory.

When BASIC lists programs, they may appear slightly different than the
way they were originally typed in, but they are always functionally

identical to the original form. A different appearance can happen if the
original program had extraneous spaces between keywords, unnecessary
parentheses in expressions, etc. BASIC keywords are always automatically
capitalized.

When you finish editing the procedure, use the g (for quit) command to

exit edit mode and return to system mode. When you enter the g command,
the compiler passes over the entire procedure again. At this time, syntax
that extends over multiple lines is checked and errors reported. Examples
of these errors are:

= GOTO or GOSUB to a non-existent line
= missing variable or array declarations
= improperly constructed loops

These errors are reported using an error code and the hexadecimal I-code
address of the error. For example:

01FC ERR #000:043



Line-Number Oriented
Editing

Chapter 6

Edit Mode

This message means that error number 43 was detected in the line that
included I-code address 01FC (hexadecimal). The LIST command gives
the I-code addresses so you can locate lines with errors reported during the
compiler’s second pass.

The editor can work on programs with or without line numbers. If you use
line numbers, they must be positive whole numbers in the range of
1 to 32767.

If you have used another version of the BASIC language, this is the kind of
editing you probably used. However, well-structured programs seldom
really need line numbers. Do not use line numbers unless they are
necessary. By not using line number, your programs will be shorter, faster,
and easier to read.

The line-number oriented commands are:

Command: Description:
<space> <line#> <text> Inserts or replaces a numbered line.
<line#> <cr> Finds a numbered line.

r Renumbers a line.

re Renumbers all lines.

To enter or replace a numbered line, entepace> , followed by the line
number and statement. You can enter numbered lines in any order, but they
are stored in ascending sequence. To move the edit pointer to a numbered
line, type the line number followed by a carriage return. The editor moves
to that line (or the line with the next higher number if the specified number
is not found) and displays it. You can delete the line with the d command.

The r renumber command uniformly resequences all numbered lines and
lines that refer to numbered lines. The syntax for this command is
as follows:

r [ <begline #> [[ <incr> ]][CR]
r’[  <beg line #> [, <incr> ]][CR]

The first format renumbers the program starting at the current line and
moving forward to the end of the procedure. Lines are renumbered using
<beg line#> as the initial line number. <incr> is added to the previous line
number for the next line’'s number. The following example gives the first
line number 200, the second 205, etc. If <beg line#> and/or <incr> are not
specified, the values 100 and 10, respectively, are assumed.

r 200,5

The second form of the command renumbers all lines in the procedure.

6-3



Chapter 6

Edit Mode

String-Oriented Editing

6-4

Most editor commands are string-oriented, which means that you can enter
or change whole or partial lines without using line numbers.
String-oriented editing is generally fast and convenient.

Because line numbers are not used, the editor maintagditgwointer to
indicate which line is the present working location within the procedure.
String-oriented commands work relative to this point.

The editor shows you the location of the edit pointer by displaying an
asterisk (*) at the left side of the program line where the edit pointer is
presently located.

Moving the Edit Pointer

Use the addition (+) and subtraction () commands to reposition the
edit pointer:

Command: Description:

— <number> Moves backward <number> lines.

—* Moves to the beginning of the procedure.
+ Moves forward one line.

+ <number> Moves forward <number> lines.

+* Moves to the end of procedure.

The <number> indicates how many lines to move. Backward means
towards the first line of the procedure. If the number is omitted, one is used
(this is true of most edit commands).

A line consisting of a carriage return only moves the pointer forward one
line, which makes it easy gtepthrough a program one line at a time.
Therefore, the following commands all do the same thing:

[CR]
+[CR]
+1 [CR]

Inserting Lines
The insert line function consists of a space followed by a BASIC statement

line. The statement is inserted just ahead of the edit pointer position. The
space itself is not inserted.



Chapter 6

Edit Mode

Deleting Lines
The d command deletes one or more lines:

d [<number>] [CR]
d*

The first form deletes the specified number of lines starting at the edit
pointer’s current position. If the number is negative, that many liefse
the current line are deleted. If a line number is omitted, only the current
line is deleted.

The second form deleted lines in the procedure. The editor also accepts
two variations of this command:

Command: Description:
d+* Deletes all lines to the end of the procedure.
d-* Deletes all lines to the beginning of the procedure.

Important: Be careful when using the d* command. You may delete
lines unintentionally.

Listing Lines

The | command displays one or more lines:

| [<number>] [CR]

|*

The first form displays the specified number of lines starting at the edit
pointer’s current position. If the number is negative, previous lines
are listed.

The second form displays the entire procedure. Neither form changes the
edit pointer’s position. The line that is the current position of the edit
pointer is displayed with a leading asterisk.

Search: Finding STRINGS

A string is a sequence of one or more characters. This can include letters,
numbers, or punctuation, in any combination. Strings allow you to change
or locate a portion of a statement without having to type the

entire statement.

6-5



Chapter 6

Edit Mode

6-6

In the editor, strings must be surroundedibiimiters. Delimiters are two
matching characters located at the beginning and the end of a string. The
editor uses delimiters to locate the beginning and the end of strings. The
characters used for delimiters are not considered part of the string.
Therefore, the character you use for a delimiter must not appear within
the string.

Do not confuse the strings used by the editor with BASIC’s data type
which is also called STRING —. Although they have the same name, they
are quite different.

You can use the s command to locate the next occurrence or all
occurrences of a string. The format for this command is as follows:

s <delim> <match str> [<delim>] [CR]
s* <delim> <match str> [<delim>] [CR]

The first format searches for the <match str> starting with the current line.
If any line at or following the edit pointer includes a sequence of characters
that match the search string, the edit pointer is moved to that line and the
line is displayed. If the string cannot be located, the following message is
displayed and the edit pointer remains at its original position:

CAN'T FIND: “<match str>"

The s* variation searches for all occurrences of the string in the procedure
starting at the present edit pointer and displays all lines in which it is
found. The edit pointer is moved to the last line where the string occurred.

Here are some examples:

Command: Description:

E:s/counter/ Looks for the string:  counter

E:s.1/2. Looks for the string:  1/2

E:s?three blind mice? Looks for the string:  three blind mice

Change: STRING Substitution

The change string function can eliminate a tremendous amount of typing.
It allows strings within lines to be located, removed, and replaced by
another string. This command is commonly used for fixing error lines
without having to retype the entire line or changing a variable name
throughout a program. The format for the c command is as follows:

¢ <delim> <match str> <delim> <repl str> [<delim>] [CR]
c* <delim> <match str> <delim> <repl str> [<delim>] [CR]



Chapter 6

Edit Mode

In the first form, the editor looks for the first occurrence of the match
string starting at the present edit pointer position. If found, the match string
is removed from the line and the replacement string is inserted in its place.

The second form works the same way, except it chaalgescurrences of
the match string in the procedure starting at the edit pointer’s

current position.

The c* command stops when it finds or creates a line with an error.
Important: Sometimes you can inadvertently change a line you did not
intend to change because the match string is imbedded in a longer string.
For example, if you attempt to change no to yes and the word normal
occurs before the no you are looking for, normal will change to yesrmal.

Examples

c/xvallyval/
c*,GOSUB 5300,GOSUB 5500

6-7



Running Programs

Chapter

Execution Mode

To run a BASIC procedure, enter:
RUN<procname>

If the procedure you want to run was the last procedure edited, listed,
saved, etc., you can execute it without specifying a procedure name (the
asterisk (*) shown in the DIR command identifies this procedure).

If the procedure expects parameters, you can enter them on the same
command line. They must all be constant numbers or strings, as
appropriate, and must be given in the correct order. For example:

RUNadd(4,7)

This calls a program (such as the one that follows) and passes it the
specified parameters.

PROCEDUR&dd

PARAMETER a,b a,b receive the values 4,7
PRINT a+b

END

The ability to pass parameters to a program allows you to specifically
initialize program variables. Sometimes certain procedures are parts of a
larger software system and are designed to be called from other
procedures. You can use this feature to individually test such procedures by
passing them test values as parameters.

When you execute the RUN statement, BASIC enters execution mode. The
procedure runs until one of the following events occur:

= an END or STOP statement is executed
= you type[Ctrl-E]

= arun-time error occurs

= you type[ctr-C]  (keyboard interrupt)

Important: In the first two cases, you return to system mode. In the last
two cases, you enter debug mode.

7-1



Chapter 7

Execution Mode

Execution Mode: Technically
Speaking

7-2

The RUN statement is simple and normally you do not need to know what
is happening inside BASIC when you use it. The technical description of
execution mode that follows is given for the benefit of advanced

BASIC programmers.

Execution mode is BASIC's state when you run any procedure. It involves
executing the Icode of one or more procedures inside or outside the
workspace. Many procedures can be in use because they can call each
other (or themselves) and nest exactly like subroutines.

You can enter execution mode in two ways:

= the RUN system command
= BASIC’s auto-run feature

The auto-run feature allows BASIC to get the name of a file to load and

run from the same command line used to call BASIC. The file can be
either a SAVED file in the data directory or a PACKED file in the

execution directory. The file may contain several procedures; the one
executed is the one with the same name as the file. Parameters may be
passed following the specified pathname. When using the auto-run feature,
upon finishing execution, control returns to BASIC’s command mode. For
example, the following OS-9 command lines use this feature:

$ BASIC printreport “Past Due Accounts”
$ BASIC evaluate COS(7.8814)/12.075,-22.5,129.055



Chapter

Debug Mode

Overview of Debug Mode Symbolic debugging is the testing and manipulation of programs using the
actual names and program statements used in the program. This is
accomplished by BASIC’s powerful symbolic debugging commands:

= $

» BREAK

= CONT

= DEG/RAD

= DIR

= LET

= LIST

= PRINT

= Q

= STATE

This chapter discusses how the debug mode can let you watch your
program run in slow motion. This allows you to observe each statement as
it is executed. This chapter also includes how to use the debug mode as
a calculator.

Debug mode is entered from execution mode in one of three ways:

= when an error occurs during execution of a procedure (that is not
intercepted by an ON ERROR GOTO statement within the program)

= when a procedure executes a PAUSE statement
= when a keyboard interrugt(i-C] ) occurs

When any of the above happen, debug mode displays the suspended
procedure name like this:

BREAK: PROCEDURE test5
D:

Important: Debug mode displaysm@m prompt when it is waiting for a
command. You can then use any debug mode command to examine or
change variables, turn trace mode on/off, etc. Depending on which
commands are used, execution of the program can be terminated, resumed,
or executed one source line at a time.

8-1



Chapter 8

Debug Mode

$ Shell Command

Syntax

$ <text>

Function

$ calls OS-9's shell command interpreter to run a program or OS-9
command. This command executes the same as the system mode
$ command.

BREAK Set Breakpoint

Syntax

BREAK<proc name>

Function

BREAKSets abreakpoint at the specified procedure. This command is used
when procedures call each other and provides a way to re-enter debug
mode when returning to a specific procedure.

To illustrate how BREAK works, suppose three procedures are in your
workspace: Procl, Proc2, and Proc3. Assume that Procl calls Proc2, and
Proc2 calls Proc3. While Proc3 is executing, you tyge-c]  to enter
debug mode. To use the BREAK command, type:

D: BREAK procl
ok
D:

Important: BREAKresponds with ok if the procedure was found on the
current RUN stack. You can use the STATE command to verify that the
three procedures are nested as expected.

You can resume execution of Proc3 by typing cont. After Proc3 terminates,
control passes back to Proc2, which eventually returns to Procl. As soon as
this happens, the breakpoint you set is encountered, Procl is suspended,
and debug mode is re-entered.

8-2



CONT

DEG/RAD

Chapter 8

Debug Mode

There are three characteristics of BREAK you should note:

= The breakpoint is removed as soon as it occurs.

= You can use one breakpoint for each active procedure.

= You cannot put a breakpoint on a procedure unless it has been called but

not yet re-entered. Therefore, BREAK cannot be used on procedures
that have not yet run.

Continue Execution

Syntax

CONT

Function
CONTcontinues program execution at the next statement. It may resume

programs suspended [oir-C]  , PAUSE statements, BREAK command
breakpoints, or after non-fatal run-time errors.

Select Degree or Radian Units for Computation

Syntax

DEG
RAD

Function

The DEG and RAD commands set a state flag. The system uses this state
flag to determine whether degrees or radians (respectively) should be used
as the angle unit for trigonometric functions. These commands only affect
the procedure currently being debugged or run.

8-3



Chapter 8

Debug Mode

DIR Display Workspace Directory

Syntax

DIR [<path>]

Function

DIR displays the workspace procedure directory in the same way as the
system mode DIR command.

LET Assignment Statement

Syntax

LET <var> := <expr>

Function

The debug mode LET command is essentially the same as the BASIC LET

program statement. It allows the value of a procedure variable to be set to a
new value using the result of the evaluated expression. The variable names
used in this command must be the same as in the original source program;

otherwise, an error is generatedT does not work on user-defined data
structures.

LIST List Current Procedure

Syntax

LIST

Function
LIST displays a formatted source listing of the suspended procedure with

Icode addresses. An asterisk is printed to the left of the statement where the
procedure is suspended. You can only list the current procedure.

8-4



PRINT

STATE

Chapter 8

Debug Mode

Print Present Value of Variables

Syntax

PRINT [#<expr>,] [USING <expr>,] <expr list>

Function

PRINT can be used to examine the present value of variables in the
suspended program. All variable names must be the same as in the original
program. You cannot use new variable names. User-defined data structures
cannot be printed.

Quit Debug Mode

Syntax
Q

Function

Qterminates execution of all procedures and exits debug mode by returning
to system mode. Any open paths are closed at this point.

List Calling Order of Procedures

Syntax
STATE

Function

STATElists the calling (nesting) order of all active procedures. The
highest-level procedure is always shown at the bottom of the calling list,
and the lowest-level procedure is always listed first.

Example

D:state
PROCEDUREELTA
CALLED BY BETA
CALLED BY ALPHA
CALLED BY PROGRAM

8-5



Chapter 8

Debug Mode

STEP Single (or Specified) Line Execution

Syntax

STEP[<number>] or [CR]

Function

STEP executes the suspended procedure one or more source statements at
a time.

For example, step 5 executes the equivalent of the next five source
statements. A debug command line which is just a carriage return is
considered the same as stegTEPis most commonly used with the trace
mode on. This allows you to see the original source lines as they

are executed.

Important: Because compiled I-code contains actual statement memory
addresses, the top or bottom statements of loop structures are usually
executed just once. For example, in FOR...NEXT loops the FOR statement
is executed once, so the statement that appears to be the top of the loop is
actually the one following the FOR statement.

TRON/TROFF Turn On/Off Trace Mode

Syntax

TRON
TROFF

Function

These commands turn the suspended procedure’s trace mode on and off. In
trace mode, the compiled code of each equivalent statement line is
reconstructed to source statements and displayed before the statement is
executed. If the statement causes the evaluation of one or more
expressions, an equal sign and the expression result(s) are displayed on the
following line(s).

Trace mode is local to a procedure. If the suspended procedure calls

another, no tracing occurs until control returns to the calling procedure
(unless the called procedure has trace mode on).

8-6



Debugging Techniques

Chapter 8

Debug Mode

If your program does not do what you expect, it is sure to show one of
two symptoms:

» premature termination due to an error
= incorrect results

The first case automatically sends you into debug mode. In the second
case, you have to force the program into debug mode either by pressing
[ctl-C]  (assuming you have time to do so), or by using edit mode to put
one or more PAUSE statements in the program. Once you are in debug
mode, you can debug your program.

Usually, after an error stops the program you should use the PRINT
command to look at the present values of crucial program variables. Bad
values are usually quite apparent. Perhaps you forgot to initialize a variable
or forgot to increment a loop counter.

If examining variables is not fruitful, you should place a PAUSE statement
at the beginning of the suspected procedure or at a place within the code

where you think things begin to go wrong. Then, rerun the program. When
the program hits the PAUSE statement, it enters the debug mode.

Next, turn the trace mode on and watch your program run. Type:
D: TRON

Then, press the carriage return key once for every statement you want to
trace. You will see the original source statement, and if expressions are
evaluated by the statement, debug mode prints an equal sign and the result
of the expression.

Notice that some statements such as FOR and PRINT may cause more than
one expression to be evaluated.

Using this technique, you can watch your program run one step at a time
until you see where it goes wrong.

If in the process of tracing, you encounter a loop that works, but executes
200 statements repetitively, you do not have to trace line by line. In this
case, you may turn the trace off and use the STEP command to quickly run
through the loop. Then, turn trace mode back on, and resume single-step
debugging. The command sequence for this is:

D: TROFF
D: STEP 200
D: TRON

8-7



Chapter 8

Debug Mode

Debug Mode as a Desk
Calculator

8-8

Important: Trace mode itocal to one procedure only. If the procedure

being tested returns to another procedure you need to use the BREAK
command or put a PAUSE statement in the procedure to enter debug mode.
If you call another procedure from the procedure being debugged, tracing
stops when it is called until it returns. If you also want to trace the called
procedure, it needs its own PAUSE statement.

The simple program listed below turns debug mode into a powerful
calculator. Calculator declares 26 working variables, then goes into debug
mode. This allows you to use interactive PRINT and LET statements.

PROCEDUREalculator
DIM a,b,c,d,e f,g,h,i,j,k,I,m
DIM n,o0,p,q,r,s,t,u,v,w,x,y,z
PAUSE

END

Recall that while in debug mode, you cannot create new variables.
Therefore, DIM pre-defines 26 working variables for you. You can use
more or fewer variableeAusecauses you to enter debug mode. The
following is a sample session:

B: run calculator

BREAK: PROCEDURE Calculator
D:let x:=12.5

D:print sin(pi/2)

1.

D:let y:=exp(4+0.5)

D:print X,y

12.5 90.0171313

D:Q
B:

Important: The debug mode PRINT command can use PRINT USING to
produce formatted output (including hexadecimal).



Data Types

Data Structures

Chapter

Data Types and Data Structures

Computer programs process data. The computer’s performance, and even
sometimes whether or not a computer can handle a particular problem,
depends on how the software stores data in memory and operates on it.
BASIC offers many possibilities for organizing and manipulating data.

There are many types of data. You can have numerical data, textual data,
etc., but you can seldom mix data types. Not only do they have different
storage size requirements, but they are logically incompatible. For
example, it would be meaningless to multiply letters and punctuation.

Even within the same general kind of data, there are different ways to
represent data. You can represent numbers in three different ways. Each
way has its own advantages and disadvantages. You should use the way
that fits your needs for each procedure.

To help you select the most appropriate way to store data variables, BASIC
provides five different basic data types. BASIC also lets you create new
customized data types based on combinations of the five basic types.

A data structure refers to storage for more than one data item under a
single name. Data structures can be composed of various data types. Data
structures are often the most practical and convenient way to organize large
amounts of similar data.

The simplest kind of data structure is #reay, which is a table of values.
The table has a single name, and the storage space for each individual
value is numbered. Arrays are created by DIM statements.

For example, to create an array having five storage spaces called AGES,
use the statement:

DIM AGES(5):INTEGER

(5) tells BASIC how many spaces to reserve. (INTEGER indicates the
array’s data type. To assign a value of 22 to the third storage space in the
array, use the statement:

LET AGES(3):=22

9-1



Chapter 9

Data Types and Data Structures

The Five Basic Data Types

The BYTE Data Type

9-2

BASIC includes five basic data types:

Type: Allowable values: Memory requirement:
BYTE Whole Numbers 0 to 255 One byte

INTEGER Whole Numbers -2,147,483,648 to 2,147,483,647 | Four bytes

REAL Floating Point (+/) 2.2*10"-308 to 1.8*10"308 Eight bytes

STRING Letters, digits, punctuation One byte/character
BOOLEAN True or False One byte

REAL numbers appear to be the most versatile data type. They have the
greatest range and are floating-point. Arithmetic operations involving
them, however, are relatively slow (by a factor directly related to the
memory required) when compared to the INTEGER or BYTE types.

Therefore, using INTEGER values for loop counters, indexing arrays, etc.
can significantly speed up your programs. While the BYTE type is not
appreciably faster than INTEGER, it conserves memory space in some
cases and serves as a building block for complex data types in other cases.

If you neglect to specify the type of a variable, BASIC automatically
assumes the REAL data type.

Arrays of any of these data types can be created using one, two, or
three dimensions.

BYTE variables hold integer values in the range 0 through 255 which are
stored as a single byte. BYTE values are always converted to INTEGER
values and/or REAL values for computation, thus they have no speed
advantage over other numeric types. However, BYTE variables require
only a quarter of the storage used by integers, and an eighth of that used
by reals.

Attempting to store an integer value outside the BYTE range to a BYTE
variable results in the storage of the least-significant 8-bits (the value
modulo 256) without error.



The INTEGER Data Type

The REAL Data Type

Chapter 9

Data Types and Data Structures

INTEGER variables consist of four bytes of storage. These bytes hold a
numeric value in the range —2,147,483,648 through 2,147,483,647 as
signed 32-bit data. Decimal points are not allowed. INTEGER constants
may also be represented as hexadecimal values in the range $00000000
through $FFFFFFFF to facilitate address calculations. INTEGER values
are printed without a decimal point. INTEGER arithmetic is faster and
requires less storage than REAL values.

Arithmetic which results in values outside the INTEGER range does not
cause run-time errors but instead “wraps around” modulo 4,294,967,296;
(for example, 2,147,483,647 + 1 yields 2,147,483,648). Division of an
integer by another integer yields an integer result, and any remainder is
discarded. Values outside the INTEGER range are converted to REAL
values. Consequently, they return an input error when passed to a
procedure as integers. Additionally, certain functions (LAND, LNOT,
LOR, LXOR) use integer values, but produce results on a non-numeric
bit-by-bit basis.

The REAL data type is the default type for undeclared variables. However,
a variable may be explicitly typed REAL (for example, twopi:REAL) to
improve a program'’s internal documentation. REAL-type values are
always printed with a decimal point, and only those constants which
include a decimal point are actually stored as REAL values.

REAL numbers are stored in eight consecutive memory bytes. The
representation is based on the double-precision format of IEEE Draft
Standard 754. Bit 7 of the first byte is the sign of the mantissa. Bits 0-6 of
the first byte and bits 4-7 of the second byte form the exponent. The
exponent is biased by 1024. The remaining 52 bits comprise the mantissa.

The mantissa has an implied leading one bit.

9-3



Chapter 9

Data Types and Data Structures

Internal Representation of
REAL Numbers
BYTE: +0 +1 +2 +3 +4 +5 +6 +7
| | | | | | |
S | <exponent> <mantissa>
| | | | | | |
Mantissa Sign

The STRING Data Type

9-4

The exponent covers the range 2.2*107-308 (2*-1022 through 1.8*10"308
(271024)) as powers of 2. Operations which result in values out of the
representation range cause overflow or underflow errors (which may be
handled automatically by the ON ERR@&nmand).

The mantissa covers the range from 1.0 through 1.99999999999999 in
steps of 27-31. This means that REAL numbers can represent values on the
number line about .0000000005 apart. Operations which cause results
between the representable points are rounded to the nearest

representable number.

Floating point arithmetic is inherently inexact, thus a sequence of
operations can produce a cumulative error. Proper rounding (as
implemented in BASIC) reduces this effect but cannot eliminate it.
Programmers using comparisons on REAL guantities should use caution
with strict comparisons (= or <>), because the exact desired value may not
occur during program execution.

A STRING is a variable length (0 or more) sequence of characters. A
STRING of zero characters is called an empty STRING. A variable may be
defined as a STRING either explicitly (DIM title:STRING) or implicitly

by appending a dollar-sign character to the variable name (title$ := “My
First Program.”).

The default maximum length allocated to each string is 32 characters, but
each string may be dimensioned less (DIM A:STRING [4]) for memory
savings or more (DIM long:STRING [2880]) to allow long strings.

Important: Strings are inherently variable-length entities, and
dimensioning the storage for a string only defines the maximum-length
string which can be stored there.



The BOOLEAN Data Type

BYTE:

BYTE:

Chapter 9

Data Types and Data Structures

When a STRING value is assigned to a STRING variable, the bytes
composing the string are copied into the variable storage byte-by-byte. The
beginning of a string is always character number one, and ti$ is

affected by the BASEO or BASE1 statements. Operations which result in
strings too long to fit in the dimensioned storage truncate the string on the
right and no error is generated.

Normally the internal representation of the string is hidden. A string is

stored in a fixed-size storage area and is represented by a sequence of bytes
terminated by the value zero or by the maximum length allocated to the
STRING variable. Any remainingnusedstorage after the zero byte allows

the stored string to expand and contract during execution.

The example below shows the internal storage of a variable dimensioned
as STRING[6jand assigned a value of SAM. Notice the byte at +3
contains the zero string terminator, and the two following bytes are

not used.

+0 +1 +2 +3 +4 +5

If the value ROBERT is assigned to the variable, the zero byte terminator
is not needed because the STRING fills the storage:

+0 +1 +2 +3 +4 +5

A BOOLEAN data type can have only two values: TRUE or FALSE. They
are stored as single byte values, but they may not be used for numeric
computation. A variable may be typed BOOLEAN (DIM
done_flag:BOOLEAN). BOOLEAN values print out as the character
strings: “TRUE” and “FALSE.”

BOOLEAN values result from comparing two compatible types.

BOOLEAN values are appropriate for logical flags and expressions. For
example, result:=a AND b AND c.

9-5



Chapter 9

Data Types and Data Structures

Automatic Type Conversion

Constants

Numeric Constants

9-6

Do not confuse BOOLEAN operations AND, OR, XOR, and NOT with
the logical functions LAND, LOR, LXOR, and LNOT. Logical functions
use integer values to produce results on a bit-by-bit basis.

Attempting to store a non-BOOLEAN value in a BOOLEAN variable (or
the reverse) causes a binding error or an error on the second compiler pass
when leaving edit mode.

Expressions that mix numeric data types (BYTE, INTEGER, or REAL) are
automatically and temporarily converted to the largest type necessary to
retain accuracy. In addition, certain BASIC functions also perform
automatic type conversions as necessary. Therefore, numeric quantities of
mixed types may be used in most cases.

Type-mismatch errors happen when an expression includes types that
cannot legally be mixed. These errors are reported by the second compiler
pass which automatically occurs when you leave edit mode. Type
conversions can take time. Therefore, you should use expressions
containing all values of a single type wherever possible.

Constants are frequently used in program statements and in expressions to
assign values to variables. BASIC has rules that allow you to specify
constants that correspond to the five basic data types.

Numeric constants can be either REAL or INTEGER. If a number constant
includes a decimal point or uses the “E format” exponential form, BASIC
stores the number in REAL format. This is true even if the value could be
represented by an INTEGER or BYTE data type. For example, 8.0.

Therefore, if you want to use a REAL constant, include a decimal point.
This is sometimes done if all other values in an expression are of type
REAL so BASIC does not have to do a time-consuming type conversion
at run-time.

Numbers that do not have a decimal point but are too large to be
represented as integers are also stored in REAL format. The following are
examples of REAL values:

16.0 —10.1234567 —.002
100000055 2.67E+12 —458.9E-33



Boolean Constants

String Constants

Variables

Chapter 9

Data Types and Data Structures

Numbers that do not have a decimal point and are in the range of
—-2,147,483,648 to +2,147,483,647 are treated as INTEGER numbers.
BASIC also accepts integer constants in hexadecimal in the range 0 to
$FFFFFFFF. Hexadecimal numbers must have a leading dollar sign. The
following are examples of INTEGER values

12 2771 49908 $20
$FEED $0A 0

The two legal boolean constants are TRUE and FALSE:

DIM flag, state: BOOLEAN
flag := TRUE
state := FALSE

String constants consist of a sequence of any characters enclosed in
quotation marks. The binary value of each character byte can be 1 to 255.
Quotation marks can be included in the string by using two quotation
marks in a row to represent one quotation mark.

The null string (") is important because it represents a string having no
characters. It is analogous to the numeric zero. The following are STRING
examples:

“BASIC is a microcomputer language”
“AABBCCDD”

“ (a null string)
“An "older woman

"

is wiser”

Each BASIC variable ibcal to the procedure where it is defined. Local
means that it is only known to the program statements within that
procedure. You can use the same variable name in several procedures and
the variables will be completely independent. If you want other procedures
to be able to share a variable, you must use the RUN and PARAM
statements to pass the variable when a procedure calls another procedure.

Storage for variables is allocated from the BASIC workspace when the
procedure is called. You cannot force a variable to occupy a particular
absolute address in memory. When the procedure is exited, variable storage
is given back and the values stored in it are lost. Procedures can call
themselves (this is referred torasursion) which causes another separate
storage space for variables to be allocated.

9-7



Chapter 9

Data Types and Data Structures

Parameter Variables

9-8

variables. When a procedure is run, all variables, arrays, and
structures will have random values. Your program must assign
any initial value if needed.

Q ATTENTION: BASIC does not automatically initialize

Procedures may pass variables to other procedures. When this occurs, the
variables passed to the called procedure are referredbtoameters
Parameters may be passed in two ways:

Name: Description:

by reference This allows values to be returned from the called procedure to calling
procedure variables.

by value This protects the values in the calling procedure so that the called
procedure cannot change them.

Parameters are usually passed by reference. This is done by enclosing the
names of the variables to be sent to the called procedure in parentheses as
part of the RUN statement. The storage address of each parameter variable
is evaluated and sent to the called procedure, which then associates those
addresses with names in a local PARAM statement.

The called procedure uses this storage as if it had been created locally
(although it may have a new name) and can change the values stored there.
Parameters passed by reference allow called procedures to return values to
their callers.

Parameters may be passed by value by writing the value to be passed as an
expression which is evaluated at the time of the call. Useful
expression-generators that do not alter values are +0 for numbers or +*’

for strings. For example:

RUNinverse(x) Passes x by reference.
RUN inverse(x+0) Passes x by value.

RUN translate(word$) Passes word$ by reference.
RUN translate(word$+"") Passes word$ by value.

When parameters are passed by value, a temporary variable is created
when the expression is evaluated. The result is placed in temporary
storage. The address of this temporary storage is sent to the called
procedure. Therefore, the value actually given to the called procedure is a
copy of the result, and the called procedure cannot change the variable(s)
in the calling program.



Arrays

Complex Data Types

Chapter 9

Data Types and Data Structures

Important: Expressions containing numeric constants are either

INTEGER or REAL; there is no type BYTE constant. Thus, BYTE-type
variables may be sent to a procedure as parameters, but expressions will be
of types INTEGER or REAL. For example, a RUN statement may evaluate
an INTEGER as a parameter and send it to the called procedure. If the
called procedure is expecting a BYTE-type variable, it uses only the
high-order byte of the (four-byte) INTEGER (which, if the value was
intended to be in BYTE-range, is probably zero.).

The DIM statement can create arrays of from one to three dimensions:

= A vector is a one-dimensional array.
= Atableis a two-dimensional array.
= A matrix is a three-dimensional array.

The sizes of each dimension are defined when the array is typed (for
example, DIM plot(24,80):BYTE) by including the number of elements in
each dimension.

Therefore, a table dimensioned (24,80) has 24 rows (1-24) of 80 columns
(1 - 80) when accessed in the default (BASE 1) mode. You may elect to
access the elements of an array starting at zero (BASE 0), in which case
there are still 24 rows (now 0-23) and 80 columns (now 0-79). Arrays may
be composed of basic data types, complex data types, or other arrays.

The TYPE statement defines a new data typevast@r (a
one-dimensional array) of any basic or previously-defined types.
For example:

TYPEemployee_rec = name:STRING; number(2):INTEGER; malesex:BOOLEAN

This structure differs from an array in that the various elements may be of
mixed types, and the elements are accessed by a field name instead of an
array index. For example:

DIM employee_file(250): employee_rec

employee_file(1).name := “Tex”
employee_file(20).number(2) := 115

9-9



Chapter 9

Data Types and Data Structures

9-10

The complex structure allows you to store and manipulate related values
that are of many types, to create new types in addition to the five defined
data types, or to create data structures of unusual shape or size. The
position of the desired element in complex-type storage is known and
defined at compile time and need not be calculated at run time. Therefore,
complex structure accesses may be slightly faster than array accesses.

The elements of a complex structure may be copied to another similar
structure using a single assignment operator (:=). An entire structure may
be written to or read from mass storage as a single entity (for example,
PUT #2, employee_file).

Arrays or complex structures may be elements of subsequent complex
structures or arrays.



Evaluation of Expressions

Chapter

Expressions, Operators, and Functions

Many BASIC statements evaluate expressions. The result of an evaluation
is always a value of some basic type: REAL, INTEGER, STRING, or
BOOLEAN. The expression itself may consist of values and operators. For
example, the expression 5+5 results in an integer with a value of ten.

A value can be a constant value, a variable name, or a function which
returns the result as a value. An operator combines values (typically, those
adjacent to the operator) and also returns a result.

When evaluating an expression, each value is copieddgpmassion

stack where functions and operators take their input values and return
results. If the expression is used in an assignment statement, the
assignment is made only when the result of the entire expression has been.
This allows the variable which is being modified to be one of the values in
the expression. The same principles apply for numeric, string, and boolean
operators. These principles make assignment statements such as X=X+1
legal in all cases, even though it would not make sense in a

mathematical context.

Any expression evaluates to one of the five basic data types. This does not
mean, however, that all the operators and operands in expressions have to
be of an identical type. Often types are mixed in expressions because the
result of some operator or function has a different type than its operands.
An example is the “less than” operator:

24 < 100

The less-than operator (<) operator compares two numeric operands. The
result of the comparison is of type BOOLEAN; in this case, the
value TRUE.

BASIC allows you to mix the three numeric types because it performs
automatic type conversion of operands. If different types are used in an
expression, the result is the same type as the operand(s) having the largest
representation. As a rule, any numeric type operand may be used in a
expression that is expected to produce a result of type REAL. Expressions
that must produce BYTE or INTEGER results must evaluate to a value that
is small enough to fit the representation. BASIC has a complete set of
functions that can perform compatible type conversion. Type-mismatch
errors are reported by the second compiler pass when leaving edit mode.

10-1



Chapter 10

Expressions, Operators, and Functions

Operators Operators (excepting negation) perform some operation on two operands.
This produces a result, which is generally the same type as the operands.
The following table lists the operators available and the types they accept
and produce.

Operator: Function: Operand type: Result type:
- Negation NUMERIC NUMERIC
Aor Exponentiation NUMERIC (positive) NUMERIC
* Multiplication NUMERIC NUMERIC
/ Division NUMERIC NUMERIC
+ Addition NUMERIC NUMERIC
- Subtraction NUMERIC NUMERIC
NOT Logical Negation BOOLEAN BOOLEAN
AND Logical AND BOOLEAN BOOLEAN
OR Logical OR BOOLEAN BOOLEAN
XOR Logical EXCLUSIVE OR | BOOLEAN BOOLEAN
+ Concatenation STRING STRING

= Equal to ANY BOOLEAN
<>or>< Not equal to ANY BOOLEAN
< Less than NUMERIC, STRING 1 BOOLEAN
<=or=< Less than or Equal NUMERIC, STRING 2 BOOLEAN
> Greater than NUMERIC, STRING 3 BOOLEAN
>=or => Greater than or Equal NUMERIC, STRING 4 BOOLEAN

When comparing strings, the ASCII collating sequence is used, sothat0<1<..<9<A<B<
w<Z<a<hb<..<z

Important: NUMERIC refers to either BYTE, INTEGER, or REAL types.

10-2



Operator Precedence

Chapter 10

Expressions, Operators, and Functions

Operators havprecedence This means they are evaluated in a specific
order. Parentheses can override natural precedence. However, the compiler
may remove extraneous parentheses. The legal operators are listed here, in
precedence order from highest to lowest:

Precedence: Operator:
Highest Precedence NOT

—(negate)

A

.

*

/

+

>

< <> = >= <=

AND
Lowest Precedence OR

XOR

Operators of equal precedence are shown on the same line, and are
evaluated left to right in expressions. The only exception to this rule is
exponentiation, which is evaluated right to left. Raising a negative number
to a power is not legal in BASIC.

In the following examples, BASIC expressions on the left are evaluated as
indicated on the right. Either form may be entered, but the decompiler
always generates the form on the left:

BASIC representation: Equivalent form:

a:= b+c**2/d a:= b+((c**2)/d)

a:=b>c AND d>e OR c=e a:= ((b>c) AND (d>e)) OR (c=¢)

a:= (b+c+d)le a:= ((b+c)+d)/e

a:= b**c**dle a:= (b**(c**d))le

a:= —(b)**2 a:= (-h)**2

a:=h=c a:= (b=c) (returns BOOLEAN value)

10-3



Chapter 10

Expressions, Operators, and Functions

Functions Functions accept one or more arguments enclosed in parentheses, perform
some operation, and return a value. They may be used as operands in
expressions. Functions expect that the arguments passed to them are
expressions, constants, or variables of a certain type and return a result of a
certain type. Giving a function an argument of an incompatible type results
in an error.

In the descriptions of functions that follow, the following notation
describes the type required for the parameter expressions:

Name: Description:

<num> Specifies any numeric-result expression.
<str> Specifies any string-result expression.
<int> Specifies any integer-result expression.

The functions below return REAL results. Accuracy of transcendental
functions is 8+ decimal digits. Angles can be either degrees or radians (see
DEG/RAD statement descriptions).

Important: Transcendental functions take a long time to return a value if
passed an extremely large value (for example, SIN(100000000)).

Name: Description:
SIN(<num>) Trigonometric sine of <num>. Result: -1 <= SIN(<num>) <=1
COS(<num>) Trigonometric cosine of <num>. Result: -1 <= COS(<num>) <=1
TAN(<num>) Trigonometric tangent of <num>.
ASN(<num>) Trigonometric arcsine of <num>. Result; —P1/2 <= ASN(<num>) <= PI/2
ACS(<num>) Trigonometric arcosine of <num>. Result: 0 <= ACS(<num>) <= P|
ATN(<num>) Trigonometric arctangent of <num>. Result: —PI/2 <= ATN(<num>) <= PI/2
LOG(<num>) Natural logarithm (base e) of <num>, which must be positive.
LOG10(<num>) Logarithm (base 10) of <num>, which must be positive.
SQR(<num>) Square root of <num>, which must be positive.
SQRT(<num>) Square root of <num>; same as SQR.
EXP(<num>) e (2.71828183) raised to the power <num>, which must be a
positive number.
FLOAT(<num>) <num> converted to type REAL (from BYTE or INTEGER).
INT(<num>) Truncates all digits to the right of the decimal point of a REAL <num>.
Examples: INT(0.21) = 0. INT(-2.5) = -2.
PI The constant 3.141592653589793.
RND(<num>) If <num>=0, returns random x, 0 <= x < 1.
If <num>>0, returns random x, 0 <= x < <num>.
If <num><0, use ABS(<num>) as new random number seed.

10-4



Chapter 10

Expressions, Operators, and Functions

The following functions return results of type INTEGER or BYTE:

Name:

Description:

FIX(<num>)

Rounds REAL <num> and converts to type INTEGER.

MOD(<num1>,<num2>)

Modulus (remainder) function. MOD returns the remainder of <num1>
divided by <num2>. If <num1> is negative, the result is negative.
Examples: MOD(9,5) = 4 ; MOD(-11,3) = -2

ADDR(<name>)

Absolute memory address of variable, array, or structure named <name>.

SIZE(<name>)

Storage size in bytes of variable, array, or structure named <name>.

ERR Error code of most recent error, automatically resets to zero when
referenced.

PEEK(<int>) Value of byte at memory address <int>.
WARNING: The specified memory address must be within the limits of
accessible memory space. PEEK(-1) gives a bus error on most systems.
This causes BASIC to abort.

POS Current character position of PRINT buffer.

ASC(<str>) Numeric value of first character of <str>.

LEN(<str>) Length of string <str>.

SUBSTR(<strl>,<str2>) | Substring search: returns starting position of first occurrence of <str1> in
<str2>, or 0 if not found.

INKEY (#<num>) Returns the number of characters in data buffer.

FILSIZ(#<num>) Returns size of a file.

The following functions can return any numeric type, depending on the
type of the input parameter:

Name: Description:

ABS(<num>) Absolute value of <num>,

SGN(<num>) Signum of <num>: =1 if <num> < 0; 0 if <num> = 0; or 1 if <num> > 0.
SQ(<num>) Square <num>.

VAL(<str>) Convert type STRING to type NUMERIC.

10-5



Chapter 10

Expressions, Operators, and Functions

The following functions perform bit-by-bit logical operations on integer or
byte data types and return integer results. Do not confuse them with the
BOOLEAN-type operators.

10-6

Name: Description:
LAND(<num>,<num>) Logical AND
LOR(<num>,<num>) Logical OR

LXOR(<num>,<num>)

Logical EXCLUSIVE OR

LNOT(<num>)

Logical NOT

These functions return a result of type STRING:

Name: Description:

CHR$(<int>) ASCII character equivalent of <int>. <int> must be within range
of 0-127.

DATE$ Date and time, format: yy/mm/dd hh:mm:ss.

LEFT$(<str> <int>) Leftmost <int> characters of <str>.

RIGHT$(<str> <int>) Rightmost <int> characters of <str>.

MID$(<str>,<int1> <int2>)

Middle <int2> characters of <str> starting at character position
<int1>.

STR$(<num>)

Converts numeric type <num> to displayable characters of type
STRING representing the number converted.

TRIM$(<str>)

<str> with trailing spaces removed.

The following functions return BOOLEAN values:

Name: Description:

TRUE Always returns TRUE.

FALSE Always returns FALSE.

EOF(#<num>) End-of-file test on disk file path <num>, returns TRUE if

end-of-file condition exists.




Program Structure

Chapter

Program Statements and Structure

A BASIC program can be written as a single procedure, or it may be
divided into a number of smaller procedures, each of which performs a
specific function.

Single procedure programs may be useful when the program is relatively
small. However, large complex programs are generally much easier to
develop, test, and maintain when the program is divided into several
procedures. To do this, you should create a main routine which calls other
BASIC procedures to perform specific functions as subroutines. These
BASIC procedures may in turn call other BASIC procedures in the same
manner. These techniques reflect sound structured programming practice.

A procedure consists of any number of program statement lines. Each line
can have an optional line number. More than one program statement can be
placed on the same line if separated by backslash (\) characters. For
example, the following statements are equivalent:

GOSUB50 \ PRINT X,Y \ RETURN GOSUB 550
PRINT X,Y
RETURN

While these statements are functionally equivalent, the second is generally
considered preferable. The first method runs no faster and tends to hide the
structure of the program.

The number of characters on a line is dependent on the content of the line.
In general, lines should be limited to 128 characters or less, to avoid the
generation of errors when BASIC decompiles the I-code for listing
purposes or at run time.

Loop nesting is limited to 39 levels. Nested procedure and subroutine calls
are only limited by stack space.

Program readability is improved if all variables are declared with DIM
statements at the beginning of the procedure, but this is not mandatory.

11-1



Chapter 11

Program Statements and Structure

Assignment Statements

LET

11-2

Line numbers are optional. They can be any integer number in the range of
1to 32767. Only use line numbers where absolutely necessary (such as
with GOSUB). They make programs harder to understand, use additional
memory space, and increase compile time considerably. Line numbers are
local to procedures. That is, the same line number can be used in different
procedures without conflict.

You can terminate programs with END or STOP statements. These
statements are optional.

Assignment statements are used for computing or initializing of variables.
The two assignment statements available with BASIC are LET and POKE.

Assignment State

Syntax

[LET] <var>:= <expr>
[LET] <var> = <expr>
[LET] <struct> := <struct>
[LET] <struct> = <struct>

Function

LET evaluates an expression and stores the result in <var>. <var> may be a
simple variable or data structure element. The result of the expression
(<expr>) must be of the same or compatible type as <var>.

BASIC accepts either or := as an assignment operator. However, the
second form (:=) is preferred because it distinguishes the assignment
operation from a comparison (the test for equality). ;Eheperator is also
used in PASCAL.

You can also use the assignment statement to copy the entire value of an
array or complex data structure to another array or complex data structure.
The data structures do not have to have the same type or shape. The only
restriction is that the size of the destination structure be the same or larger
than the source structure.

You can use this type of assignment to perform unusual type conversions.
For example, a string variable of 80 characters can be copied to a
one-dimensional array of 80 bytes.



POKE

Chapter 11

Program Statements and Structure

Examples
A:=0.1
value := temp/sin(x)

DIM array1(100), array2(100)
arrayl := array2

LET AUTHORS := FIRST_NAMES + LAST_NAME$
DIM truth,lie:BOOLEAN
lie:=100<1

truth := NOT lie

count = total-adjustment
matrix(2).coefficient(n+2) := matrix(1).coefficient(n)

Store Data at Specific Memory Address

Syntax

POKE<integer expr> , <byte expr>

Function

POKEallows a program to store data at a specific memory address. The first
expression is used as the absolute address to store the type BYTE result of
the second expressiarOKEcan alter any memory address, so you must be
careful when using it.

ATTENTION: Using POKE with an invalid address causes
BASIC to abort.

11-3



Chapter 11

Program Statements and Structure

Control Statements

IF. THEN..ELSE

11-4

Examples
POKEADDR (buffer)+5,ASC(*A”)
POKE 1200,14
POKE $1C00,$FF
POKE pointer,PEEK(pointer+1)

(* same as alphabet$ := “ABCDEFGHIJKLMNOPQRSTUVWXYZ” *)
FOR i=0 to 25
POKE ADDR(alphabet$)+i,$40+i
NEXT i
POKE ADDR(alphabet$)+26,$00

Control statements affect the sequential execution of program statements.
They are used to construct loops or make decisions that alter program flow.
BASIC provides a selection of loop statements that allow you to create any
kind of loop using sound structured programming style. The control
statements are IF..THEN..ELSE, FOR..NEXT, WHILE..DO,
REPEAT..UNTIL, LOOP..ENDLOOP, GOTO, GOSUB..RETURN, ON
GOTO..RETURN, ON GOSUB..RETURN, and ON ERROR GOTO.

Control Statement

Syntax

IF <bool expr> THEN <statements>
[ ELSE <statements> ]
ENDIF

IF <bool expr> THEN <line #>

Function

The IF structure evaluates an expression to a BOOLEAN value. If the
result is TRUE, the statement(s) immediately following the THEN are
executed. If an ELSE clause exists, statements between the ELSE and
ENDIF are skipped. If the expression is evaluated to FALSE, control is
transferred to the first statement following the ELSE (if present) or to the
statement immediately following the ENDIF.



FOR..NEXT

Chapter 11

Program Statements and Structure

A special form of the IF statement transfers execution to the statement
having a line number specified if the result of the expression is TRUE. The
line number follows immediately after THEN. This is an implied GOTO
statement. Use this with caution (as all GOTO statements should).

Examples

IF a<bTHEN
PRINT “ais less than b”
PRINT “a:";a;“ b:";b
ENDIF

IFa<bTHEN
PRINT “a is less than b”
ELSE
IF a=b THEN
PRINT “a equals b”
ELSE
PRINT “a is greater than b”
ENDIF
ENDIF

IF payment < balance THEN 400

Control Statement

Syntax
FOR<var> = <expr> TO <expr> [ STEP <expr> ]
NEXT <var>

Function

FOR..NEXT creates a loop that usually executes a specified number of times
while automatically increasing or decreasing a specified counter variable.

The first expression is evaluated and the result is stored in <var>. <var>
must be a simple integer or real variable. The second expression is
evaluated and stored in a temporary variable.

If you use STEP, its expression is evaluated and used as the loop
increment. If the increment is negative, the loop counts down.

11-5



Chapter 11

Program Statements and Structure

Thebody of the loop (the statements between the FOR and NEXT) is
executed until the NEXT variable (a counter) is larger than the terminating
expression value. For negative STEP values, the loop executes until the
loop counter is less than the termination value. If the initial value of <var>
is beyond the terminating value, the body of the loop is never executed.

You can jump out of FOR..NEXT loops.

expressions, there is a possibility of not completing the number
of loops logically indicated. For example, the following loop
would seem to complete x number of loops. Due to the
rounding nature of REAL numbers, it may only complete

(x — 1) loops:

Q ATTENTION: When using REAL control and STEP

FORa = 1/x TO 1 STEP 1/x

next a

To make sure that the loop is executed the correct number of times, use
INTEGER values for all expressions.

Examples

FORvar = min—1 TO min+max STEP increment-adjustment
PRINT var
NEXT var

FOR x=1000 TO 1 STEP -1

PRINT x
NEXT x

11-6



Chapter 11

Program Statements and Structure

WHILE..DO Control Statement

Syntax
WHILE <bool expr> DO

<statements>
ENDWHILE

Function
This loop tests its control expression at the top of the loop. Statements
within the loop are executed as long as <bool expr> is TRUE. The body of

the loop is not executed if the boolean expression evaluates to FALSE
when first executed.

Examples

WHILEa<b DO s equivalentto 100 IF a>=b THEN 500

PRINT a PRINT a
a:=atl a:=atl
ENDWHILE GOTO 100
500 REM

DIM yes:BOOLEAN

yes=TRUE

WHILE yes DO
PRINT “yes! ”
yes := POS<50

ENDWHILE

REM reverse the letters in word$

backward$ ="

INPUT word$

WHILE LEN(word$) > 0 DO
backward$ := backward$ + RIGHT$(word$,1)
word$ := LEFT$(word$,LEN(word$)-1)

ENDWHILE

word$ := backward$

PRINT word$

11-7



Chapter 11

Program Statements and Structure

REPEAT..UNTIL Control Statement

Syntax

REPEAT
<statements>
UNTIL <bool expr>

Function

This loop tests its control expression at the bottom of the loop. The
statement(s) within the loop are executed until the result of <bool expr> is
TRUE. The body of the loop is always executed at least one time.

Examples
x=0 is the same as x=0
REPEAT 100 PRINT x
PRINT x x=x+1
X=x+1 IF X <=10 THEN 100
UNTIL x>10

(* compute factorial: n! *)
temp = 1.
INPUT “Factorial of what number? ”,n
REPEAT
temp :=temp*n
n:=n-1
UNTILn<=1.0
PRINT “The factorial is ”; temp

11-8



Chapter 11

Program Statements and Structure

LOOP..ENDLOOP/ Control Statement
EXITIF.ENDEXIT
Syntax
LOOP
<statements>
ENDLOOP

EXITIF <bool expr> THEN <statements>
ENDEXIT

Function

LOOP..ENDLOOPandEXITIF..ENDEXIT are inherently related. They can be
used to construct loops with tests located anywhere in the body of the loop.
The LOOP and ENDLOOP statements define the body of the loop.

EXITIF clauses can be inserted anywhere inside the loop to leave the loop
if the result of its test is true.

Important: If there is no exit clause, you will create an endless loop.

EXITIF..ENDEXIT allows control to be passed to the next statement outside
the structure containing the EXITIF statement (this includes IF..THEN
statementsEXITIF evaluates an expression to a boolean result. If the
result is TRUE, the statements between the THEN and the ENDEXIT are
executed, and control is transferred outside the binding structure.
Otherwise, the statement following ENDEXIT is executed. This exit clause
is often used to perform some specific function upon termination of the
loop which depends on where the loop terminated.

EXITIF statements are almost always used when LOOP..ENDLOORP is
used, but they can also be useful in any type of loop or
conditional construct.

11-9



Chapter 11

Program Statements and Structure

GOTO

11-10

Examples

LOOP is equivalentto 100 count = count+1
count = count+1 IF count <= 100 THEN
EXITIF count > 100 THEN PRINT count

done = TRUE GOTO 100
ENDEXIT ELSE

PRINT count done = TRUE
ENDLOOP ENDIF

REM out of loop

INPUT X,y
LOOP

PRINT

EXITIF x < 0 THEN
PRINT “x became zero first”
ENDEXIT
X =x-1
EXITIF y < 0 THEN PRINT “y became zero first”
ENDEXIT

y=y-1
ENDLOOP

Control Statement

Syntax

GOTline #>

Function

GoTtaunconditionally transfers execution flow to the line having the
specified number.

Important: The line number is a constant, not an expression or a variable.

Example

GOTQL000



Chapter 11

Program Statements and Structure

GOSUB..RETURN Control Statement

Syntax

GOSUKline #>

<line#> <statements>
RETURN

Function

GOSUHransfers program execution to a subroutine starting at the specified
line number. The subroutine is executed until a RETURN statement is
encountered which causes execution to resume at the statement following
the calling GOSUB. Subroutines may be nested to any depth.

Example

FORnN :=11to0 10
X := SIN(n)
GOSUB 100
NEXT n
FORmM:=1TO 10
X := COS(m)
GOSUB 100
NEXT m
STOP

100 x = x/2

PRINT x
RETURN

11-11



Chapter 11

Program Statements and Structure

ON GOTO/ON GOSuUB

11-12

Control Statement

Syntax

ONc<integer expr> GOTO <line #> {,<line #>}
ON <integer expr> GOSUB <line #> {,<line #>}

Function

These statements evaluate an integer expression and use the result to select
a corresponding line number from an ordered list. Control is then
unconditionally transferred to that line number in ON GOTO statements or
as a subroutine in ON GOSUB statements.

These statements are similar to CASE statements in other languages.

Each <line #> in the ordered list is given a value (beginning with

1, 2, 3, ...). <integer expr> must evaluate to a positive INTEGER result
having a value between 1 and N; N being the highest line number in the
list. N is limited by input line length and the number of digits in each line
number. The best case limit for N is 60.

Important: If the expression has a result that does not correspond with the
ordered list, no GOSUB statement is selected and the next sequential
statement is executed.



ON ERROR GOTO

Chapter 11

Program Statements and Structure

Example

(* spell out the digits 0 to 7 *)

DIM digit:INTEGER

A$="one digit only, please”

INPUT “type in a digit”; digit

ON digit+1 GOSUB 10,11,12,13,14,15,16,17
PRINT A$

STOP

(* names of digits *)

10 A$ .= “ZERO"
RETURN

11 A$ ;= “ONE”
RETURN

12 A% .= “TWO”
RETURN

13 A% .= “THREE"
RETURN

14 A$ ;= “FOUR”
RETURN

15 A$ := “FIVE"
RETURN

16 A$ = “SIX”
RETURN

17 A$ := “SEVEN"
RETURN

Control Statement

Syntax

ONERROR [ GOTO <line #> ]

Function

This statement sets a trap that transfers control to the specified line number
when a non-fatal run-time error occurs. If no ON ERROR GOTO has been
executed in a procedure before an error occurs, the procedure stops and
enters DEBUG mode. You can turn off the error trap by executing ON
ERROR without a GOTO.

This statement is often used with the ERR function which returns the

specific error code, and the ERROR statement which artificially
generates errors.

11-13



Chapter 11

Program Statements and Structure

Important: ERRautomatically resets to zero any time it is called.

Example
(* List afile *)

DIM path,errnum: INTEGER; name: STRING[45]
DIM line: STRING[80]
ON ERROR GOTO 10
INPUT “File name? ”; name
OPEN #path,name:READ
LOOP
READ #path, line
PRINT line
ENDLOOP

10 errnum=ERR

IF errnum = 211 THEN

(* end-of-file *)
PRINT “Listing complete.”
CLOSE #path
END

ELSE

(* other errors *)
PRINT “Error number ”; errnum
END

ENDIF

11-14



Execution Statements

RUN

Chapter 11

Program Statements and Structure

Execution statements run procedures, stop execution of procedures, create
shells, or affect the current execution of the procedure.

Run Procedure

Syntax

RUN<proc name> [ ( <param> {,<param>}) ]

Function

RUNcalls a procedure by name. When that procedure ends, control passes
to the statement after the RUN statement. It is most often used to call a
procedure inside the workspace, but it can also be used to call a previously
compiled procedure or a 68000 machine language procedure outside the
workspace. The name can be optionally taken from a string variable.

Parameter Passing

RUNcan include a list of parameters enclosed in parentheses to be passed to
the called procedure. The called procedure must have PARAM statements
of the same size and order to match the parameters passed to it by the
calling procedure.

The parameters can be variables, constants, or the names of entire arrays or
data structures. They can be of any typeeptvariables of type BYTE.
However, BYTE arrays are allowed.

If a parameter is a constant or expression, it is passed by value. A
parameter passed by value is evaluated and placed in a temporary storage
location and the address of the temporary storage is passed to the called
procedure. Parameters passed by value can be changed by the receiving
procedure, but the changes are not reflected in the calling procedure.

If the parameter is the name of a variable, array, or data structure, it is
passed by reference. When passed by reference, the address of that storage
is sent to the called procedure, and the value in that storage may be
changed by the receiving procedure. These changes are reflected in the
calling procedure.

11-15



Chapter 11

Program Statements and Structure

11-16

Calling External Procedures

If the procedure named by RUN cannot be found in the workspace, BASIC
checks to see if it was loaded by OS-9 outside the workspace. If it is not
found there, BASIC tries to find a disk file having the same name in the
current execution directory, loads it, and runs it.

In either case, BASIC checks to see if the called procedure is a BASIC
I-code module or a 68000 machine language module and executes it
accordingly. If it is a 68000 machine language module, BASIC executes a
JSR instruction to its entry point and the module is executed as 68000
native code. The machine language routine can return to the original
calling procedure by executing an RTS instruction. The diagram on the
next page shows what the stack frame passed to machine-language
subroutines looks like.

Machine language modules return error status by setting the carry bit of the
MPU condition codes register and by setting the low order word of register
D1 to the appropriate error code. For an example of a machine language
subroutine (SYSCALL), see Appendix A.

After an external procedure has been called but is no longer needed, the
KILL statement should be used to get rid of it so its memory space can be
used for other purposes.

Example

PROCEDUR(g_table

numl:=0\num2:=0

REPEAT
RUN display(num1,SIN(num1))
RUN display(num2,COS(num2))
PRINT

UNTIL numl1 >1

END

PROCEDURE display
PARAM passed,funcval
PRINT passed;":";funcval,
passed := passed + 0.1
END



Figure 11.1
Stack Frame Passed to Machine Language Procedures

more parameters

Chapter 11

Program Statements and Structure

!

higher addresses

size of 2nd param

8 bytes

addr of 2nd param
size of 1st param 4 bytes
return address 4 bytes

addr of 1st param

parameter count

68000 Register D1

68000 Register DO

68000 Stack Register Pointer

Register Value

11-17



Chapter 11

Pr