
OS-9 C Language

User Manual

The OS-9/68000 Source Level Debugger was written by Richard Russell.
Special thanks are given to Larry Crane, Kim Kempf and Robert Doggett
for their infinite patience and their invaluable design and implementation
ideas. Thanks also to James Jones, Tim Harris, Todd Earles, Tony Hoffman
and Dave Lyons for their use and testing of the software.

OS-9 C Compiler and OS-9 C Functions

Copyright  1991 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optical, chemical, manual, or otherwise is
prohibited, without written permission from Microware Systems
Corporation.

This manual reflect Version 3.1 of the C Compiler. Version 3.1 of the C
Compiler is to be used with Version 2.3 or greater of the OS-9 Operating
System.

Publication Editor: Walden Miller, Eileen Beck
Revision: I
Publication date: March 1991
Product Number: CCC-68-NA-68-MO

OS-9/68000 Source Level Debugger

Copyright  1987 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optical, chemical, manual or otherwise is
prohibited, without written permission from Microware Systems
Corporation.

This manual reflects Version 2.0 of SrcDbg. Version 2.0 of Srcdbg is to be
used with Version 2.2 or greater of the OS-9/68000 Operating System,
Version 3.0 or greater of the C Compiler, Edition 53 or greater of L68,
Edition 54 or greater of R68, Edition 77 or greater of R68020.

Publication Editor: Walden Miller, Kathleen Flood
Revision: B
Publication date: July 1988
Product Number: SDG-68NA-68-MO

Acknowledgements

Copyright and Revision
History

The information contained herein is believed to be accurate as of the date
of publication. However, Microware will not be liable for any damages,
including indirect or consequential, from use of the OS9 operating system,
Microware-provided software, or reliance on the accuracy of this
documentation. The information contained herein is subject to change
without notice.

The software described in this document is intended to be used on a single
computer system. Microware expressly prohibits any reproduction of the
software on tape, disk, or any other medium except for backup purposes.
Distribution of this software, in part or whole, to any other party or on any
other system may constitute copyright infringements and misappropriation
of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have
questions concerning the above notice, the documentation and/or software,
please contact your OS-9 supplier.

Microware and OS-9 are registered trademarks of Microware Systems
Corporation and OS-9/68000 is a trademark of Microware Systems Corp.
UNIX is a trademark of Bell Laboratories.
VMS is the trademark of Digital Equipment Corp.
SUN is the trademark of Sun Microsystems, Inc.

Microware Systems Corporation w 1900 N.W. 114th Street
Des Moines, Iowa 50325-7077 w Phone: 515/224-1929

Disclaimer

Reproduction Notice

Trademarks

Introduction
Preface

i

Introduction

Microware’s C Language Compiler System is an advanced technology,
high-performance software development tool with the following features:

 comprehensive implementation of the full language

 extremely efficient code generation producing extremely fast and
compact object programs

 generates position-independent, reentrant, ROMable code

 high compilation speed

 UNIX and OS-9 compatible standard libraries

68000-family microprocessors, the OS-9 operating system and the C
language form an outstanding combination. The 680x0’s stack-oriented
instruction set and versatile repertoire of addressing modes handle the C
language very well. The OS-9 C compiler was designed specifically for the
68000 family and takes full advantage of their abilities and features.

This compiler also serves as a gateway between UNIX and OS-9. Because
of the compiler compatibility and similarities of OS-9 and UNIX, almost
any application program written in C can be transported from a UNIX
system to an OS-9 system, recompiled and correctly executed. The
compiler can also be run on UNIX-based computers and the output
downloaded to an OS-9-based 680x0 system.

The 68020 C Compiler

The 68020 C Compiler employs the additional capabilities of the 68020
MPU and the 68881 math coprocessor.

This manual covers both the 68000 and 68020 C Compiler. The 68020
Compiler can process all 68000 code and syntax; however, there are
additional libraries available to the 68020 Compiler. Because of this
discrepancy, all items that are specific to the 68020 compiler are shown in
shaded boxes for easy reference. All other text references both the 68000
and 68020 compilers. All references to OS-9/68000 or 68000 code
includes 68020, unless specifically disclaimed.

Introduction
Preface

ii

Cross Compiler Versions

The OS-9 C compiler is available in cross compiler versions for use on
various development systems. The systems currently supported are listed
below:

Host system: Operating system:

DEC VAX Series BSD 4.2, BSD4.3,VAX/VMS

SUN/3 Series SUN UNIX

Unless otherwise noted, the information given in this document applies to
native mode and cross versions of the compiler.

The C Programming Language - Kernighan & Ritchie

The specification for the OS-9 C compiler is the book The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie, published by
Prentice-Hall, Inc. It is hereafter referred to as “K&R”. This compiler
conforms exactly to this specification except for the implementation
dependent characteristics noted in this manual.

K&R frequently refer to characteristics of the C language whose exact
operations depend on the architecture and instruction set of the computer
actually used. This manual contains specific information regarding this
version of C for 68000 family processors.

The following caveats should be noted when using Srcdbg. Most of these
problems will not arise with normal usage of Srcdbg. However, these
explanations are provided for the user in case such situations do arise.

Using Cstart

Register .a5 is used as the frame pointer by the C Compiler. Because of
this, Srcdbg assumes that register .a5 is set to zero before reaching the first
link instruction generated by c68. This is done automatically by “cstart”. If
cstart is not used (i.e. the user has written a specific routine to take its
place), .a5 must be set to zero in order for Srcdbg to work correctly.

SRCDBG 2.0 Caveats

Introduction
Preface

iii

Programs Which Chain

Srcdbg is not able to continue debugging a program which chains to other
programs or chains to itself after the chain occurs. This is because of the
necessity of having a correct symbol table for the program being
debugged. If a program chains to another program, there will be no
symbols available to debug the new program. If a program chains to itself,
the symbol table will be there, but the addresses of the code and data areas
usually will have moved. Consequently, the symbol table is unusable.

This will be corrected in a future release.

Bus Errors

If a bus error occurs on a system with a non-68020 processor, Srcdbg may
not correctly stop at the source line at which the error occurred. It may be
off by a line or two. This is due to the fact that the bus error PC register
may be off from zero to ten bytes for any non-68020 processor. Srcdbg
will accurately reflect bus errors occurring on 68020 systems.

Tagged Structs, Unions and Enums

Srcdbg issues a warning if a tagged struct, union or enum of one file has
the same tag name as a different tagged struct, union or enum of another
file. For example:

ATTENTION: “<s_u_e1>” in “<file1>” differs from
“<s_u_e2>” in “<file2>”

Important: <s_u_e> indicates the struct, union or enum tag name.

Using Files with the Same Name

Srcdbg issues a warning if a source or include file with executable code is
referenced more than once. For example:

ATTENTION: file “<filename>” with executable code has
been previously seen. The name for this file is now
“<filename><num>”.

Introduction
Preface

iv

Multiple files will be named <filename><num>, where <num> starts at
zero. For example, the second file named program.c will be referred to as
program.c0 by SrcDbg.

Edited Source files

Srcdbg issues a warning if a sourcefile has been edited since it was
compiled with the –g option. For example:

ATTENTION: source file “<filename>” has been changed.

If the source code has been changed, the file needs to be
recompiled with the –g option to ensure that the symbol
information matches the source code.

Important: If a symbol file is used that does not actually match the
program module, SrcDbg’s behavior will be unpredictable.

OS-9 C Language User Manual
Table of Contents

I

SECTION 1 OS-9 C COMPILER

Chapter 1

Executable Files 1-1.
Library Files 1-2.
Definition Files 1-3.
Library and Definition File Directory Searching 1-3.
Command Lines and the C Executive 1-4.
Compiler Options 1-7.
Example Command Lines 1-9.
Math Library and C Library Selection Options 1-9.
Notes 1-10.

Chapter 2

Data Representation 2-1.
Register Variables 2-1.
Access To Command Line Parameters (Argc, Argv, Envp) 2-3.
End-of-Line Character 2-3.
Implementation-Dependent Variances 2-3.
Enhancements and Extensions 2-3.
System Calls and the Standard Library 2-7.

Chapter 3

Compiler Organization 3-1.

Chapter 4

Using the Termcap Library 4-1.

Installing and Running the
Compiler

Compiler Implementation

Compiler Organization

Using the Termcap Library

OS-9 C Language User Manual
Table of Contents

II

SECTION 2 THE C STANDARD LIBRARY

Chapter 5

The C Standard Library 5-1.
_atou() 5-7.
_cmpnam() 5-7.
_cpymem() 5-8.
_errmsg() 5-9.
_ev_creat() 5-10.
_ev_delete() 5-11.
_ev_info() 5-12.
_ev_link() 5-12.
_ev_pulse() 5-13.
_ev_read() 5-14.
_ev_set() 5-14.
_ev_setr() 5-15.
_ev_signal() 5-16.
_ev_unlink() 5-17.
_ev_wait() 5-18.
_ev_waitr() 5-19.
_exit() 5-20.
_freemin() 5-21.
_get_module_dir() 5-22.
_get_process_desc() 5-23.
_get_process_table() 5-24.
_get_sys() 5-24.
_gs_devn() 5-25.
_gs_eof() 5-26.
_gs_gfd() 5-27.
_gs_opt() 5-28.
_gs_pos() 5-29.
_gs_rdy() 5-30.
_gs_size() 5-31.
_julian() 5-32.
_Icalloc() 5-34.
_lfree() 5-35.
_Imalloc() 5-36.
_Irealloc() 5-37.
_mallocmin() 5-38.
_mkdata_module() 5-39.
_parsepath() 5-40.
_prgname() 5-40.
_prsnam() 5-41.
_setcrc() 5-41.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

III

Chapter 5 Continued

_setsys() 5-42.
_srqmem() 5-43.
_srtmem() 5-44.
_ss_attr() 5-45.
_ss_dcoff() 5-46.
_ss_dcon() 5-46.
_ss_dsrts() 5-47.
_ss_enrts() 5-47.
_ss_lock() 5-48.
_ss_opt() 5-49.
_ss_pfd() 5-50.
_ss_rel() 5-51.
_ss_rest() 5-52.
_ss_size() 5-52.
_ss_ssig() 5-53.
_ss_tiks() 5-54.
_ss_wtrk() 5-55.
_strass() 5-56.
_sysdate() 5-57.
_sysdbg() 5-59.
_tolower() 5-59.
_toupper() 5-60.
abs() 5-60.
access() 5-61.
acos() 5-61.
alm_atdate() 5-62.
alm_atjul() 5-63.
alm_cycle() 5-64.
alm_delete() 5-65.
alm_set() 5-65.
asctime() 5-66.
asin() 5-67.
atan() 5-67.
atof() 5-68.
atoi() 5-68.
atol() 5-69.
attach() 5-69.
calloc() 5-70.
ceil() 5-71.
chain(), chainc() 5-72.
chdir() 5-74.
chmod() 5-75.
chown() 5-76.
chxdir() 5-77.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

IV

Chapter 5 Continued

cleareof() 5-78.
clearerr() 5-79.
clock() 5-80.
close() 5-81.
closedir() 5-82.
cos() 5-82.
crc() 5-83.
creat() 5-85.
create() 5-86.
ctime() 5-87.
detach 5-88.
difftime() 5-89.
dup() 5-89.
ebrk() 5-90.
exit() 5-91.
exp() 5-91.
fabs() 5-92.
fclose() 5-92.
fdopen() 5-93.
feof() 5-94.
ferror() 5-95.
fflush() 5-96.
fgetc() 5-97.
fgets() 5-97.
fileno() 5-98.
findnstr() 5-98.
findstr() 5-99.
floor() 5-99.
fopen() 5-100.
fprint() 5-102.
fputs() 5-103.
fread() 5-104.
free() 5-105.
freemem() 5-106.
freopen() 5-107.
frexp() 5-108.
fscanf() 5-108.
fseek() 5-109.
ftell() 5-110.
fwrite() 5-111.
getc(), getchar() 5-112.
getenv() 5-114.
getime() 5-115.
getpid() 5-115.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

V

Chapter 5 Continued

gets() 5-116.
getstat() 5-117.
getuid() 5-118.
getw() 5-119.
gmtime() 5-120.
hypot() 5-120.
ibrk() 5-121.
index() 5-122.
intercept() 5-123.
isalnum() 5-125.
isalpha() 5-125.
isascii() 5-126.
iscntrl() 5-126.
isdigit() 5-127.
islower() 5-127.
isprint() 5-128.
ispunct() 5-128.
isspace() 5-129.
isupper() 5-129.
isxdigit() 5-130.
kill 5-131.
Idexp() 5-132.
localtime() 5-132.
log() 5-133.
log10() 5-133.
longjmp() 5-134.
lseek() 5-135.
makdir() 5-136.
make_module() 5-137.
malloc() 5-139.
memchr() 5-140.
memcmp() 5-140.
memcpy 5-141.
memmove() 5-141.
memset() 5-142.
mknod() 5-142.
mktemp() 5-143.
mktime() 5-143.
modcload() 5-145.
modf() 5-146.
modlink() 5-146.
modload() 5-147.
modloadp() 5-148.
munlink() 5-149.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

VI

Chapter 5 Continued

munload() 5-150.
open() 5-151.
opendir() 5-152.
os9exec() 5-153.
os9fork(), os9forkc() 5-155.
pause 5-156.
pffinit() 5-157.
pflinit() 5-157.
pow() 5-158.
prerr() 5-158.
printf() 5-159.
putc(), putchar() 5-162.
puts() 5-164.
putw() 5-165.
qsort() 5-166.
read(), readln() 5-167.
readdir() 5-168.
realloc() 5-168.
rewind() 5-169.
rewinddir() 5-169.
rindex() 5-170.
sbrk() 5-171.
scanf() 5-172.
seekdir() 5-174.
setbuf() 5-175.
setime() 5-176.
setjmp() 5-176.
setpr() 5-177.
setstat() 5-178.
setuid() 5-179.
sigmask() 5-180.
sin() 5-181.
sleep() 5-182.
sprintf() 5-182.
sqrt() 5-183.
srqcmem() 5-183.
sscanf() 5-184.
stacksiz() 5-185.
strcat() 5-185.
strcmp() 5-186.
strcpy 5-186.
strhcpy() 5-187.
strlen() 5-187.
strncat() 5-188.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

VII

Chapter 5 Continued

strncmp() 5-188.
strncpy() 5-189.
strtod() 5-190.
strtol(), strtoul() 5-191.
system() 5-192.
tan() 5-192.
telldir() 5-193.
tgetent() 5-194.
tgetflag() 5-195.
tgetnum() 5-195.
tgetstr() 5-196.
tgoto 5-197.
time() 5-198.
toascii() 5-199.
tolower() 5-200.
toupper() 5-200.
tputs() 5-201.
tsleep() 5-202.
ungetc() 5-203.
unlink() 5-204.
unlinkx() 5-205.
wait() 5-206.
write(), writeln() 5-207.

The C Standard Library

OS-9 C Language User Manual
Table of Contents

VIII

SECTION 3 OS-9/68000 SOURCE LEVEL DEBUGGER

Chapter 6

Overview of SrcDbg 6-1.
C Compiler Revision Requirements 6-1.
Setting the Environment 6-1.
The “.dbg” and “.stb” Symbol Files 6-2.
Invoking SrcDbg 6-3.
SrcDbg Help 6-7.
Exiting SrcDbg 6-7.
SrcDbg Command Syntax 6-7.
SrcDbg Scope 6-7.
Scope Expressions 6-10.
Line Number Expressions 6-12.
C Expressions 6-13.
Location Expressions 6-14.
Command Line Notes 6-15.
Example Tutorial Program 6-15.
Notes 6-18.

Chapter 7

Fork 7-2.
Go 7-4.
Step 7-7.
Name 7-9.
Return 7-11.
Break 7-13.
Watch 7-16.
Kill 7-19.
Log 7-21.
Option 7-22.
Read 7-24.

Overview of SrcDbg

Debugger Control
Commands

OS-9 C Language User Manual
Table of Contents

IX

Chapter 8

List 8-2.
Info 8-5.
Frame 8-8.
Print 8-10.
Assign 8-13.
Chc 8-14.
Context 8-16.
Find 8-17.
Locals 8-18.

Chapter 9

Chd 9-2.
Shell 9-3.
Help 9-4.
Quit 9-4.
Chx 9-5.
Setenv 9-6.
Unsetenv 9-7.

Chapter 10

Assembly Level Display Information 10-1.
Instruction Disassembly Memory Display 10-4.
Floating Point Memory Displays 10-5.
Asm 10-6.
Change 10-7.
Dilist 10-9.
Disasm 10-11.
Dump 10-13.
Gostop 10-15.
Link 10-17.
MFill 10-18.
Msearch 10-20.
Symbol 10-23.
Trace 10-24.

Chapter 11

Syntax 11-1.
Commands 11-1.

Appendix A

Data Manipulation
Command

System Commands

Assembly Level Commands

SrcDbg Syntax and
Commands

Error Codes

Section

1
OS-9 C Compiler

This section of the manual describes:

 installing and running the OS-9 compiler

 implementing the OS-9 compiler

 organizing the OS-9 compiler

 using the termcap library

Chapter

1

1-1

Installing and Running the Compiler

The OS-9 C Compiler system consists of three distinct types of files:
executable files, library files and definition files. This section describes the
files provided with the C Compiler system, their use, and where you
should install them on your system.

The following binary files comprise the executable part of the compiler
system. The following files must be in the CMDS directory on OS-9
systems for the compiler system to work. You must copy these files from
the distribution media:

Binary code: File:

cc Compiler executive program (cc68 for cross versions)

cpp Macro preprocessor

c68 Compiler pass

o68 Optimizer

c68020 Compiler pass for 68020 compiler

The following additional modules are also required to run the C Compiler.

Binary code: File:

r68 OS-9/68000 macro assembler

l68 OS-9/68000 linker

cio Trap handler for the C I/O Library

r68020 OS-9/68020 macro assembler

cio020 Trap handler for 68020 C I/O library

Executable Files

Installing and Running the Compiler
Chapter 1

1-2

The following are important files used during the compilation process. You
should locate these files in a directory named LIB on the system’s default
mass storage device. You must copy these files from the
distribution media:

Binary code: File:

cstart.r Contains startup code for compiled programs.

clib.l Contains the standard library, math functions and the system library.

clibn.l Contains the same as clib.l but does not use the math trap handler
for floating point support. The routines to perform floating point are
extracted from the math.l library.

clib020.l Contains the 68020 standard library, math functions and the system
library.

clib020n.l Contains the same as clib020.l, but does not use the math trap
handler for floating point support. The routines to perform floating
point are extracted from the math.l library.

clib020h.l Contains the same as clib020n.l, but uses the 68881 coprocessor
hardware instructions for floating point.

The following additional modules are also required to run the C Compiler,
but are supplied elsewhere:

Binary code: File:

math.l Contains the same floating point functions as the math trap handler,
but in stand alone form.

math881.l Contains the same math.l, but uses 68881 hardware instructions for
floating point.

sys.l Contains the system global definitions.

termlib.l Contains the termcap database screen manipulation functions.

Library Files

Installing and Running the Compiler
Chapter 1

1-3

The following are definition files that define macros, constants and data
structures used by library functions. The function descriptions indicate
which of these files should be included for specific functions. These files
should be located in the DEFS directory on the system’s default mass
storage device.

Definition file: Function description:

ctype.h Type and macro definitions for character classification functions

dir.h Definitions for directory manipulation functions

direct.h Definitions of OS-9 disk directory format

errno.h OS-9 error number definitions

events.h OS-9 event sub-system definitions

math.h Math function definitions

modes.h OS-9 file permission value definitions

module.h OS-9 memory module structure definitions

procid.h OS-9 process descriptor structure definitions

setjmp.h setjmp and longjmp function state buffer definitions

setsys.h Request codes for setsys function

sgstat.h Structure for getstat, setstat and ss_opt functions

signal.h OS-9 signal definitions

stdio.h Standard I/O definitions

strings.h String handling function definitions

termcap.h Terminal manipulation library definitions

time.h Buffer definition for getime and setime functions

types.h Standard type definitions

The C compiler system relies on a number of header (#include) and library
files to compile a program. They are kept in the directories named DEFS
and LIB, respectively. These directories are located on the disk device used
for system file storage:

 On systems with a hard disk, the pathlists are /h0/LIB and /h0/DEFS.

 On systems without a hard disk, the pathlists are /d0/LIB and /d0/DEFS.

 On systems using a large RAM disk, the pathlists are /r0/LIB and
/r0/DEFS or /dd/LIB and /dd/DEFS.

Definition Files

Library and Definition File
Directory Searching

Installing and Running the Compiler
Chapter 1

1-4

There are three distinct methods of determining the location of the library
files. The following priority is used to determine the directory searched:

 command line options
 environment variables
 default search method

You can specify additional “defs” directories on the compiler executive
command line. The v option specifies a directory to search for definition
files (in addition to DEFS). You can use this option more than once on a
command line. The directories are searched in the order provided on the
command line (that is, before the system DEFS directory). Use the –w
option to specify an alternative “LIB” directory. This directory is used
instead of LIB. You can use this option to designate custom library files.

You can also use the shell environment variables, CLIB and CDEF, to
specify the directories in which the library and definition files reside.
CDEF indicates the pathlist for the directory containing the default
definition files. CLIB indicates the pathlist containing the library files. Set
the environment variables with the setenv utility command. These
variables remain in existence for the life of the current (or future) shell.

Important: These techniques for specifying search directories are used
mainly for cross compilers and network systems where these directories
are found on a file-server node.

The C executive (cc) checks for the existence of certain devices to
determine the default device. cc tries to access these devices in the
following order: /dd, /h0, /d0 using the Microware naming conventions:

 /dd = default device (usually a RAM disk)
 /h0 = hard disk
 /d0 = floppy disk

The first device that can be accessed is assumed to contain the DEFS and
LIB directories. Because all devices’ directories are not searched, the
directories should appear on the first device in the search list that is present
on the system.

The compiler system is managed by an executive program called cc (or
cc68 in cross-compiler versions). The executive accepts a command line
and automatically calls the other parts of the compiler system as needed.
The syntax of the command line which calls the compiler is:

cc [<options>] <file> {<file>} [<options>]

Command Lines and the C
Executive

Installing and Running the Compiler
Chapter 1

1-5

You can compile one or more files with a single command line. You may
mix C or assembler source code and relocatable type files on the command
line. The C executive manages the compilation through as many as
four stages:

 preprocessing code
 compilation to assembler code
 assembly to relocatable module
 linking to binary executable code (in OS-9000 memory module format).

The compiler accepts three types of source files. The source files must
conform to the naming convention provided below. Any of the file types
may be mixed on the command line:

Suffix: Use:

.c C source file

.a Assembly language source file

.r Relocatable module

If only one source file is specified on the command line, the output file is
created with a name obtained by removing the suffix from the name
supplied on the command line. For example, the following command
creates an executable file called prg:

cc prg.c

If multiple source files are specified on the command line, the output file is
created with the name output, unless an alternative name is specified using
a compiler option.

Regardless of the number of files specified on the command line, the
output file is created in the current execution directory unless overridden
by a compiler option. Any relocatable modules generated as intermediate
files are left in the same directories as their corresponding source files with
their suffixes changed to .r.

Temporary Files and Optimizing Compilation Speed

A number of temporary files are created in the current working data
directory during compilation, and it is important to ensure that enough
space is available on the disk drive. As a rough guide, at least three times
the number of blocks in the largest source file (and its #include files)
should be free.

Installing and Running the Compiler
Chapter 1

1-6

The compilation speed is directly affected by the speed at which the
temporary file can be written and read. The working directory used for
compilation should be the fastest device available on the system. For
example, if your OS-9 system has a memory-based virtual disk device, use
it for your working directory. In addition, you can use the –t command line
option to specify a fast device on which to place any temporary files.

C Library Selection Options

You can use the –i option to cause the system’s installed cio trap handler
module to be used for the C library rather than linking most of the C
library code into the program. The cio trap handler is automatically loaded
at system startup time as the standard system utilities use this facility.
Systems with a 68020 MPU can use the cio020 trap handler.

Important: The module name in each of these trap handlers is cio. Simply
rename cio020 to cio to load it instead of the 68000 cio module:

chd /h0/cmds

rename cio cio.68k

rename cio020 cio

When a program is linked with the cio.l library (using the cc –i option), the
following functions are executed in the trap handler:

_errmsg fdopen getc opendir seekdir
_freemin fflush getenv os9exec setbuf
_prgname fgets gets printf setstat
_tidyup fopen getstat putc sprintf
access fprintf getw puts sscanf
asctime fputs gmtime putw telldir
calloc fread localtime read time
close free lseek readdir ungetc
closedir freopen malloc readln unlink
creat fscanf mknod realloc unlinkx
create fseek mktime rewind write
dup ftell modloadp rewinddir writeln
fclose fwrite open scanf

Installing and Running the Compiler
Chapter 1

1-7

The compiler recognizes many command line options which modify the
compilation process. Options are not case significant. All options are
recognized before compilation begins. Consequently, you can place the
options anywhere on the command line. You can group options together
(e.g. –sr) except where an option specifies an argument (e.g. –f=<path>).

Option: Description:

–a Suppresses the assembly phase, leaving the output as assembler code in a file with the
.a suffix.

–bg Sets the sticky bit in the module header to cause the module to remain in memory even if the
link count becomes zero.

–bp Prints the arguments passed to each compiler phase and an exit status message. This is useful
to determine which arguments cc passes to each phase (given various other option flags).

–c Outputs the source code as comments with the assembler code. This option is most useful with
the –a option.

–d<identifier> Is equivalent to a #define <identifier> in the source file. This option is useful where different
versions of a program are maintained in one source file and differentiated through the #ifdef or
#ifndef preprocessor directives. If <identifier> is used as a macro for expansion by the
preprocessor, 1 (one) is the expanded value unless an expansion string is specified using the
form d<identifier>=<string>.

–e=<number> Sets the edition number constant byte to the specified number. This is an OS-9 convention for
memory modules.

–f=<pathlist> Overrides the output file naming conventions. The output file is given the name specified by the
last element of <pathlist>. The module name is the same as the file name unless the
–n=<name> option is used. This option causes an error if either the –a or –r option is also
present. If <pathlist> is a relative pathlist, it is relative to the current execution directory.

–fd=<pathlist> Is identical to the –f=<pathlist> option with the following exception: if <pathlist> is a relative
pathlist, it is relative to the current data directory.

–g Causes the linker to output a symbol module for use by the symbolic assembly language level
debugger. The symbol module has the same name as the output file with .stb appended. If a
STB directory exists in the target output directory, the symbol module is placed there.
Otherwise, it is placed in the same directory as the output file.

–i Links the program with the cio.l library, causing a trap handler module called cio to handle
references to selected C I/O functions.

–j Prevents linker from creating a jump table.

–k=<n>[w|l][cw|cl][f] <n> is the target machine: 0=68000 (default), 2=68020.
 w causes 16-bit data offsets to be generated (default 68000).
 l causes 32-bit data offsets to be generated (default 68020).
 cw causes 16-bit code references to be generated (default 68000).
 cl causes 32-bit code references to be generated (default 68020).
 f causes c68020 to generate 68881 instructions for float/double types.

–l=<path> Specifies a library file to be searched by the linker before the standard library, math libraries and
system interface library.

–m=<mem size> Instructs the linker to allocate <mem size> for the program stack. Memory size is given in
kilobytes. The default stack size is approximately 2K.

–n=<name> Specifies the output module’s name.

Compiler Options

Installing and Running the Compiler
Chapter 1

1-8

Option: Description:

–o Inhibits the assembly code optimizer pass. The optimizer shortens object code by about 11%
with a comparable increase in speed. It is recommended for production versions of
debugged programs.

–q Specifies quiet mode: the executive does not announce internal steps as they occur. Only error
messages, if any, are displayed.

–r[=<dir>] Suppresses linking library modules into executable programs. Output is left in files with a .r
suffix. If –r=<dir>, then .r files stay in <dir>.

–s Stops the generation of stack-checking code. Use this option with great care and only when the
application is extremely time critical and when the use of the stack by compiler generated code
is fully understood.

–t=<dir> Causes the executive to place the temporary files used by any compiler phase in the directory
named <dir>. If the device containing the directory is the ramdisk device (e.g., –t=/r0),
compilation time is drastically reduced.

–u<name> Undefines previously defined pre-processor macro names. Macro names pre-defined in the
pre-processor are OSK and mc68000. These names are useful to identify the compiler under
which the program is being compiled for purposes of writing machine and operating system
independent programs.

–v=<dir> Specifies an additional directory to search for pre-processor #include files. File names within
quotes are assumed to be in the current directory. File names within angle brackets (< >) are
searched for in the specified directory. This option may appear more than once. In this case
each directory is searched in the order given on the command line. The default DEFS directory
is searched after all specified directories have been searched.

–w=<dir> Specifies the directory containing the default library files (cstart.r, clib.l, etc.). This option is
useful when the library directory is on a remote file server or a custom version of such files are
being used.

–x Causes the compiler to generate trap instructions to access the floating point math routines.
This option should appear on the command line when the program is both compiled and linked
(if performed separately). The linker causes the object program to use the trap handler modules
rather than extracting the code from the math libraries.

Installing and Running the Compiler
Chapter 1

1-9

Command line: Action: Output file(s):

cc prg.c compile to an executable program prg (execution dir.)

cc prg.c –a compile to assembly language source code prg.a (current data dir.)

cc prg.c –r compile to relocatable module prg.r (current data dir.)

cc prg1.c prg2.c prg3.c compile to executable program prg1.r, prg2.r, prg3.r
(current data dir.);
output (execution dir.)

cc prg1.c prg2.a prg3.r compile prg1.c, assemble prg2.a, and
combine all into an executable program

prg1.r,
prg.r (current data dir.);
output (execution dir.)

cc prg1.c /d0/ted/prg2.c compile to executable program prg1.r (current data dir.)
prg2.r (/d0/ted),
output (execution dir.)

cc –e=3 name.c –f=prog compile to executable program set module
revision level to 3

name.r (current data dir.)
prog (execution dir.)

cc sieve.c –igf=sieve compile to executable using the cio
subroutine module and make a symbol
module for debug

sieve (execution dir.); sieve.stb
(current data dir.)

cc prog.c –dfloats compiles executable program with the floats
definition identifier passed to the compiler.

prog (execution dir.)

cc prg.c –k2 generates code for 68020 prg (execution dir.)

cc prg.c –k2w generates code for 68020 using 16-bit
offsets

prg (execution dir.)

cc prg.c –k2f generates code for 68020/68881 prg (execution dir.)

The –k and –x options for cc determine which C libraries and Math
libraries are used during the compilation/linking process. The following
chart shows the various configurations possible using these options:

Command: Target: C library: Math library: Description:

cc 68000 clibn.l math.l (Default selection) Code is generated for the 68000
MPU. The floating point math library code is linked
into the program.

cc –x 68000 clib.l <trap> Same as cc except the system’s installed math trap
handler module is used instead of linking the math
code into the program.

cc –k2 68020 clib020n.l math.l Code is generated for the 68020 MPU. The floating
point math library code is linked into the program.

cc –k2 –x 68020 clib020.l <trap> Same as cc –k2 except the system’s installed math
trap handler module is used instead of linking the
math code into the program.

cc –k2f 68020/881 clib020h.l math881.l Code is generated for the 68020 MPU. 68881
coprocessor instructions are generated inline for
floating point calculations. The math881.l library
contains the trig and numeric conversion functions.

Example Command Lines

Math Library and C Library
Selection Options

Installing and Running the Compiler
Chapter 1

1-10

Notes

Chapter

2

2-1

Compiler Implementation

Each variable type requires a specific amount of memory for storage. The
sizes of the basic types (in bytes) are as follows:

Data type: Bytes: Internal representation:

char 1 two’s complement binary

unsigned char 1 unsigned binary

short 2 two’s complement binary

unsigned short 2 unsigned binary

int 4 two’s complement binary

unsigned 4 unsigned binary

long 4 two’s complement binary

float 4 binary floating point (see below)

double 8 binary floating point (see below)

“pointer to ...” 4 address

Important: The compiler follows the convention that char and short are
converted to int with sign extension. The data types long and int
are synonymous.

You can optimize code size and speed by a judicious use of register
variables. When you declare heavily used variables as register type storage,
the compiler can perform many optimizations on-the-fly that it could not
otherwise. The most efficient use of register variables is for pointers or
loop counters.

You can use register declarations on automatic variables or function
arguments. The register declaration is effective only for integral or pointer
types. Any invalid register types or declarations in excess of available
registers are simply ignored. By declaring as many register variables as
possible, the best possible object code is obtained.

Within each function, three 32-bit address (An) registers are available for
pointers and four 32-bit data (Dn) registers are available for non-pointer
variables. If a register declaration is inappropriate for the type (like float or
double), the declaration is simply ignored (i.e., the storage class is
made automatic).

Data Representation

Register Variables

Compiler Implementation
Chapter 2

2-2

The register assignments for the variables are made in the order that the
declarations appear. Therefore, it is wise to declare register variables in the
order of heaviest use. If more register declarations are given than registers
available, the excess register storage class declarations are
considered automatic.

For further details see K&R on register declaration.

Floating Point Format

The compiler uses a floating point representation based on IEEE Draft
Standard 754, which has been adapted as the standard OS-9/68000 format.
Using this format affords direct compatibility with floating point arithmetic
coprocessor hardware.

Single Precision Storage Format:

MSB

1 8 bits 23 bits

LSB

Range: approximately * 1.2*10–38 to 3.4*10 38

Precision: approximately 7 decimal digits

sign exponent significand (mantissa)

sign exponent significand (mantissa)

Range: approximately * 2.2*10–308 to 1.8*10 308

Precision: approximately 16 decimal digits

52 bits

Double Precision Storage Format:

MSB

1 11 bits

LSB

The mantissa has an implied leading1 bit. The sign bit is the most
significant bit of the value. The exponent is biased by 128 for floats and
1024 for doubles.

Floats are promoted to doubles when passed as parameters. Floating point
code is normally accessed by the compiler via traps to the OS-9 floating
point trap handlers, thereby saving considerable memory. The floating
point math routines also promote floats to doubles for computation.

Compiler Implementation
Chapter 2

2-3

Although the compiler system uses the storage representation set forth in
the specification, the actual mathematical library routines do not support
certain internal details of the standard such as infinity arithmetic, NANs,
user defined rounding options, etc. These functions are of use to a very
limited class of users, do not affect future compatibility, and if supported
(in software routines) would significantly degrade execution speed.

The standard C arguments, argc and argv, are available to main as
described in K&R. The cstart.r start-up code converts the parameter string
passed to it by the parent process into null-terminated strings as expected
by the K&R standard. The argument envp points to a list of environment
variables for the process. The environment variables are normally set by
the shell. See the discussion of the cstart.r startup module in Chapter 3 for
the details on argument and environment variable handling.

The escape sequence for new-line (\n) refers to the ASCII carriage return
character (used by OS-9 for end-of-line), not linefeed (hex 0A) as used in
UNIX. Despite this difference, programs using \n for end-of-line
(including all programs in K&R) work properly.

Although C is a very portable language, there are inevitably minor
differences between versions. This compiler is no exception, and its
differences mostly reflect parts of C that are either obsolete or
hardware dependent.

The compiler includes a number of additional useful features as listed
below. These features are non-standard and may affect the portability of
programs to other C compilers.

Embedded Assembly Language

As versatile as C is, occasionally there are some things that can only be
done (or done at maximum speed) in assembly language. The OS-9 C
compiler permits user-supplied assembly language statements to be
directly embedded in C source programs.

A line beginning with #asm switches the compiler into a mode which
passes all subsequent lines directly to the assembly language output until a
line beginning with #endasm is encountered. #endasm switches the mode
back to normal.

Access To Command Line
Parameters (Argc, Argv,
Envp)

End-of-Line Character

Implementation-Dependent
Variances

Enhancements and
Extensions

Compiler Implementation
Chapter 2

2-4

Alternatively, a single line beginning with an at sign (@) causes the
compiler to pass the remainder of the line directly to the assembler.

You should exercise care when using embedded assembly language so that
the correct code section is adhered to. Normal code from the compiler is in
the psect (code) section. If your assembly code uses the vsect (variable)
section, be sure to put an endsect directive at the end to leave the state
correct for the following compiler generated code.

The –a and –c compiler options are useful to check out the embedded
assembler code.

Consult the section of this manual entitled Compiler Organization for
complete details on assembly language C functions.

The Remote Storage Class

The C compiler supports an additional storage class: the remote
storage class.

The 68000 register indirect with offset addressing mode limits the
addressing range to 64K. If a program requires more than 64K of static or
global storage, you must use the indexed register indirect with offset
addressing mode. This is the only way to index an address register with a
32 bit offset.

The compiler generates variable references with 32 bit offsets for those
variables declared as remote. All remote data for a program is assigned by
the linker after the normal data allocations.

The most common use for the remote storage class is to declare very
large arrays:

remote double bigarray [10000];

Compiler Implementation
Chapter 2

2-5

This declaration reserves 80,000 bytes of storage for the 10,000 element
double array. The linker organizes data memory for the process using
bigarray as follows:

80K array
for bigarray[]

Remote branch
jump table
(if required)

Normal static
and global
variables

High Address

Low Address

Initialized variables

base of data area

The remote storage class should be used sparingly, since the code required
to access such variables is larger and slower than accessing
non-remote variables.

As an alternative to using remotes, a program could declare a pointer to a
large array and perform a memory request to the system to obtain the
necessary storage.

The syntax for the remote storage class is identical to that of the extern
storage class:

remote <data type> <variable>

The scope of the declared variable can be limited to the current file
by specifying:

static remote <data type> <variable>

As an alternative to the remote storage class, a compile option is available
to cause the compiler to always generate 32- or 16-bit offsets. c68 uses
16-bit offsets (by default) to access the data area: offset(A6). c68020 by
default uses 32-bit offsets: (offset.l,A6). This can be controlled explicitly
with the –k option:

Option: Description:

cc –k0l uses c68 with 32-bit data offsets

cc –k2w uses c68020 with 16-bit data offsets

Compiler Implementation
Chapter 2

2-6

You should use care when compiling program sections separately as
linking conflicts can arise if data references and/or definitions do not
match among all sections.

PC-relative references generated by c68 are always 16-bit. If a reference
does not reach the destination, the linker substitutes a reference to a
process local jump table that contains the absolute address of
the destination.

PC-relative references generated by c68020 are always 32-bit. No jump
table reference is required as any destination address is addressable.

The Direct Storage Class

The C Compiler also supports the direct storage class. This class is not
implemented by the 68000 C Compiler, but is available to provide
portability from the 6809 to the 68000.

Control Character Escape Sequences

The escape sequences for non-printing characters in character constants
and strings (see K&R on character and string constants) are extended
as follows:

linefeed (LF): \l

This is to distinguish LF (hex 0A) from \n which on OS-9 is the same as
\r (hex 0D).

bit patterns: \NNN (octal constant)
\dNNN (decimal constant)
\xNN (hexadecimal constant)

For example, the following all have a value of 255 (decimal):

\377 \xff \d255

Compiler Implementation
Chapter 2

2-7

The system interface supports almost all of the system calls of both OS-9
and UNIX. In order to facilitate the portability of programs from UNIX,
some of the calls use UNIX names rather than OS-9 names for the same
function. Even though the names are the same, consult the discussion of
the function for any possible differences between the UNIX system call
and the OS-9 equivalent.

There are a few UNIX calls that do not have exactly equivalent OS-9 calls.
In these cases, the library function simulates the function of the
corresponding UNIX call. In cases where there are OS-9 calls that do not
have UNIX equivalents, the OS-9 names are used. Details of the calls and
a name cross-reference are provided in the C Library Section of
this manual.

The Standard Library

The C compiler includes a very complete library of standard I/O functions
provided with most UNIX or UNIX-like systems. It is essential for any
program which uses the high-level I/O functions from the standard library
(such as fopen, getc, putc, etc.) to include the statement:

#include <stdio.h>

System Calls and the
Standard Library

Chapter

3

3-1

Compiler Organization

The C compiler is made up of three main parts:

cpp the preprocessor
c68, c68020 the compiler
o68 the object code improver

The macro assembler (r68, r68020) and linker (l68) are required to
assemble and link the compiler output.

The C executive (cc or cc68) provides a uniform command interface
between the user’s command line and each individual compiler phase.

The 68020 version of the compiler (c68020) executes on either a 68000 or
68020 system. It always generates 68020 cod. ec68 always generates
68000 code.

It is the the preprocessor’s job to condition the source program for the
compiler. Conditioning involves gathering and expanding macros,
including the contents of other files into the output, removing comments
and providing the compiler with information required to report the files
and lines in error (if any).

The compiler then takes the preprocessor output and (in a single pass)
translates the source lines into assembly source code suitable for the
macro assembler.

Any errors in the source program are displayed on the standard error path
with the associated source line and a circumflex (^) pointing to the item
causing the error. For example:

“prog.c”, line 10: **** undeclared variable ****

 i = j + 1;

 ^

Due to the one-pass nature of the compiler, you can invoke the object code
improver to clean-up any inefficient code left in the assembly source by
the compiler. This function identifies and removes needless instruction
sequences. It recognizes and compresses dynamically identical program
logic, changes long displacement relative branches to short where possible,
and removes comment lines.

Compiler Organization

Compiler Organization
Chapter 3

3-2

Object Code Output

The C compiler produces assembly code that is normally position
independent, re-entrant and ROMable, assuming good programming
techniques are employed. It is possible, by the very nature of the C
language, to write code that modifies itself or accesses memory by absolute
address. You should avoid this practice to be consistent with the OS-9
position independent shared module philosophy.

After the assembly code is assembled and linked, the output of the linker is
in the form of a standard OS-9 executable machine language memory
module (including module header and CRC check value).

The Cstart Routine

The C compiler system depends on a short code section called cstart.r as
the first section of every program. It includes:

 the assembler directives to create an executable program module

 code to convert the parameter string passed by os9exec() into the argv
and envp strings for main()

 code to initialize the C I/O facility

 other initialization code

 a call to the function main()

Although the compiler is intended to produce code for OS-9-based target
systems, it is possible to alter the cstart routine for non-OS-9 or stand alone
systems. The assembler source code for this routine is provided in a file
called cstart.a. If you use the compiler to produce programs for non-OS-9
target systems you will also need to provide your own versions of the
standard library functions that perform I/O, memory management, etc.

Run-Time Arithmetic Error Handling

K&R leave the treatment of various arithmetic errors open, merely saying
that it is machine dependent. This implementation deals with a limited
number of error conditions in a special way.

Integer division by zero causes a trap through the divide by zero machine
vector. This causes a program to exit with the error status code of
E$ZerDiv (000:105) unless a handler for this exception is provided.

Compiler Organization
Chapter 3

3-3

All floating point errors, including division by zero, cause a trap through
the trapv instruction machine vector. This causes the program to exit with
the error status code of E$TrapV (000:107). These and other machine
exceptions may be caught with a user-supplied assembly language routine.

Results of other possible errors are undefined.

The Stack

The upper part (higher addresses) of a C program’s data area is reserved
for the stack. Each procedure invocation uses stack space for linkage and
automatic variable space.

It is impossible for the compiler to determine how much stack space a
specific program requires. Programs that nest function calls very deeply or
are highly recursive require more stack space. The default stack size is
approximately 2K. You may increase the stack to any desired size using the
–m compiler option flag.

The compiler generates code to check for stack underflow during
procedure calls. Use the compiler’s –s option flag to inhibit generation of
stack checking code. Though the extra code produced makes slightly larger
and slower programs, it is recommended that you retain the stack checking
code until a program is well tested. Stack overflow bugs are among the
most difficult to locate.

Interfacing to Assembly Language

C programs can run hand-written assembly language either by inline
coding in C programs using the #asm and #endasm directives or by giving
the name of previously assembled relocatable file(s) on the C executive
command line.

It is very difficult to determine just where the compiler is during code
generation, therefore it is recommended that assembly language code not
be embedded within C functions. Assembly code is best placed outside of a
function declaration or in a separately assembled module to be linked in
with the rest of the program.

If c68 is being used, all functions and machine language subroutines are
called by bsr instructions except functions more than 32k away.

Compiler Organization
Chapter 3

3-4

The register usage conventions are (in general) as follows:

Register: Usage:

D0 - D1 Function argument/return registers

D2 - D3 Compiler allocated temporaries

D4 - D7 Used for user register variables

A0 - A1 Compiler allocated temporaries

A2 - A4 Used for user register variables

A5 Frame Pointer

A6 Base address of variable storage area

A7 Stack Pointer

The compiler uses a complex register allocation method to provide the
smallest, fastest code for the majority of programs encountered. The 68000
has a large number of processor registers. About half of these are made
available to use as register variables. The rest are used by the compiler for
storing intermediate results during the evaluation of expressions.

The A6 register (used as a pointer to the base of the global and static
variables) is passed to a program when the program is forked and is never
changed by C code.

The type of the argument and the order specified in the argument list
indicates to the called function where the argument is: it is either in a
register or on the stack.

For this discussion, an integral argument is an argument of type int, a
pointer, or a char or short converted to an int. A double argument is an
argument of type double or a float converted to a double.

A float is converted to a double before being passed on the stack.

The first integral argument is passed in d0, the second integral argument (if
any) in d1. A single double argument is passed in d0 and d1, the most
significant half in d0, the least significant half in d1. Any remaining
arguments are pushed onto the stack. If the first argument is integral and
the second is a double, the integral argument is passed in d0 and the double
is passed entirely on the stack. Consult the examples of this method below.

If a function is to return a value, the integral (or float) value is returned in
the d0.l register. A double value is returned in d0.l and d1.l.

Compiler Organization
Chapter 3

3-5

Examples of C Argument Passing Techniques

Assumption: C code: Generated assembler:

init i, j, k;
double a, b, c;

func(i); move.l i,d0
bsr func

func(i,j); move.l j,d1
move.l i,d0
bsr func

func(i,j,k); move.l k,–(sp)
move.l j,d1
move.l i,d0
bsr func

func(a) movem.l a,d0/d1
bsr func

func(a,b) move.l b+4,–(sp)
move.l b+0,–(sp)
movem.l a,d0/d1
bsr func

func(a,i) move.l i,–(sp)
movem.l a,d0/d1
bsr func

func(i,a) move.l a+4,–(sp)
move.l a+0,–(sp)
move.l i,d0
bsr func

All functions (C or assembler) are required to restore any changed registers
to the values they contained when the function was called. The only
exceptions to this are function return register(s) and register(s) in which the
function’s argument(s) are passed.

All parameters passed on the stack are 4-byte long words. Types char and
short are sign extended to long words, types unsigned char and unsigned
short are padded to the left with zeroes.

The 68000 bsr instruction, which is used for function calling, is limited to a
±32K address displacement. The bsr instruction has sufficient range for all
but the very largest programs. In order to permit function calls outside this
range while retaining position independence of the code, the linker
(automatically) builds a jump table of long addresses of function entry
points outside the range of bsr.

This table resides in the data area and can be accessed by the symbol
_jmptbl defined by the linker. When coding assembly language routines,
all external functions should be accessed by the word length displacement
form of bsr so the linker can change the bsr to a jump if the displacement is
too distant.

Consult the OS-9/68000 Assembler/Linker/Debugger Manual for more
information on the jump table.

Chapter

4

4-1

Using The Termcap Library

There are six termcap library functions:

tgetent() tgetflag() tgetnum()
tgetstr() tgoto() tputs()

These functions are kept in the library file termlib.l. For standardization
purposes, termlib.l is located in the system LIB directory. They are
explained in detail in the following pages.

The termcap library functions allow a program to access the termcap
database and extract information about the capabilities of a terminal. The
functions only extract the information. The calling program determines the
capabilities to be used.

Important: Refer to Using Professional OS-9 for complete information on
setting up your termcap database file.

tgetent() must be called before any of the others. tgetent() extracts the
entry for the terminal named name and places the data into the buffer
pointed to by bufptr. The size of this buffer must be at least 1024
characters and must remain intact for all subsequent calls to tgetnum(),
tgetflag() and tgetstr().

The termcap file is located in the SYS directory on the first successful
open of /dd/SYS/termcap, /h0/SYS/termcap or /d0/SYS/termcap.

When linking programs containing these functions, use –l=/dd/lib/termlib.l
(or whatever the appropriate path is on your system).

The calling program must define the external variables PC_, BC, UP and
ospeed. PC_ is used rather than PC due to conflicts with assembler register
names. The termcap library functions merely reference the variables, not
define the storage for them.

tgetent() requires approximately 1K of stack normally. It requires 2K of
stack if the tc capability is used. Be sure to give the program more stack
memory during linkage. tgetent() recognizes both \n (LF) and \r (CR) to
allow sharing of the same termcap file on OS-9 and UNIX systems.

The value placed in ospeed is the OS-9 baud rate code which is not the
same as the equivalent UNIX baud rate code. No padding is used for
ospeed values outside of the 0 to 16 range.

Using the Termcap Library

Using The Termcap Library
Chapter 4

4-2

Typically, a program looks in the environment for TERM to get the name
of the terminal to use. This is an automatic way to let programs know the
name of the current terminal. For more information concerning the shell
environment, consult Using Professional OS-9.

Programs that use termcap usually use only a few of the defined
capabilities. Not all programs use all the capabilities and some capabilities
are not used by any programs. Determine which capabilities are required
for the application and extract the capabilities into variables for quick
access as shown in the following example:

#include <stdio.h>
#include <sgstat.h>
#include <termcap.h>

#define TCAPSLEN400

extern char *getenv();

char tcapbuf[TCAPSLEN]; /* buffer for extracted termcap strings */
 /* must remain intact for entire program */

char PC_; /* pad character */
char *BC; /* backspace character string */
char *UP; /* up cursor */
short ospeed; /* terminal speed */
char *CL, /* clear screen */
 CM, / cursor motion */
 CE, / clear end–of–line */
 CD, / clear end–of–display */
 SO, / standout begin */
 SE, / standout end */
 HO; / cursor home */

short
 lines, /* lines on screen */
 colms; /* columns on screen */

/* function to write one character */
int tputc(c)
char c;
{
 return write(1, &c, 1);
}

Using The Termcap Library
Chapter 4

4-3

/* function to write a display string */
touts(s)
char *s;
{
#ifdef brain_damaged
 while (*s) tputc(*s++);
#else
 write(1, s, strlen(s));
#endif
}

/* function to write a terminal control string */
putpad(str)
char *str;
{
 tputs(str, 1, tputc);
}

/*
 Program to demonstrate calls to termcap library functions . This
 program will display on any terminal with a proper termcap database entry.
*/
main()
{
 register char *term_type, *temp;
 auto char tcbuf[1024];/* buffer for tgetent */
/* must remain intact for all tgetstr, */
/* tgetflag and tgetnum calls */
 auto char *ptr;
 if ((term_type = getenv(“TERM”)) == NULL) {
 fprintf(stderr, “Environment variable TERM not defined!\n”);
 exit(1);
 }
 if (tgetent(tcbuf, term_type) <= 0) {
 fprintf(stderr,“Unknown terminal type ’%s’!”, term_type);
 exit(1); }

 ptr = tcapbuf;

/* get stuff we are interested in */
 if (temp = tgetstr(“PC”, &ptr)) PC_ = *temp;
 CL = tgetstr(“cl”, &ptr);
 CM = tgetstr(“cm”, &ptr);
 CE = tgetstr(“ce”, &ptr);
 CD = tgetstr(“cd”, &ptr);
 UP = tgetstr(“up”, &ptr);
 SE = tgetstr(“se”, &ptr);
 SO = tgetstr(“so”, &ptr);
 HO = tgetstr(“ho”, &ptr);
 lines = tgetnum(“li”);
 colms = tgetnum(“co”);

Using The Termcap Library
Chapter 4

4-4

 if (lines < 1 || colms < 1) {
 fprintf(stderr, “Like wow, man . No lines or columns!\n”);
 exit(1);
 }

 if (!(HO && CE && CL && CM && UP)) {/* must be given or else... */
 fprintf(stderr,“Incomplete termcap entry\n”);
 exit(1);
 }

 if (ptr >= &tcapbuf[TCAPSLEN]) {
 puts(“Terminal description too big!\n”);
 exit(1);
 }

 putpad(HO);/* home cursor */
 putpad(CL);/* clear screen */
 putpad(tgoto(CM, 50, 5));/* spot cursor */
 touts(“Fuzzy Wuzzy Wuzza Bare”);
 putpad(tgoto(CM, 30, 10));
 touts(“Fuzzy Wuzzy Hadno Hare”);
 putpad(tgoto(CM, 20, 15));
 touts(“Fuzzy Wuzzy Wuzn’t Fuzzy Wuzzy”);
 putpad(tgoto(CM, 0, lines–1));/* ready to exit */
 exit(0);
}

Section

2
The C Standard Library

This section of the manual contains chapter 5 which describes the standard
library provided with the Microware C Compiler. Chapters 6 through 8
contain functions indexes organized by the following:

 name
 category
 use

Chapter

5

5-1

The C Standard Library

The standard library provided with the Microware C Compiler consists of a
collection of high-level I/O, convenience, and system-level functions.

The high-level I/O functions provide facilities that are normally considered
part of other languages (for example, the format statement of Fortran). C
technically does not have any I/O statements, relying instead on the
standard library. This enhances the versatility and portability of
the language.

In addition, automatic buffering of I/O paths improves the speed of file
access because fewer calls to the host operating system are required.

The high-level I/O functions should not be confused with the low-level
system calls with the same names (for example, fopen() and open()). The
standard library functions maintain a structure (declared as FILE in
<stdio.h>) for each open file. This structure holds status information for
the file. A pointer (usually supplied by fopen()) to this structure is the
identity of the file, and it is passed to the various I/O functions. The I/O
functions make low-level system calls when appropriate.

Using a file pointer in a system call or a path number in a high-level I/O
call is a common mistake among beginners to C and, if made, will at best
crash your program, or at worst, provide unpredictable program behavior.

In addition to the C I/O functions, the standard library contains functions to
perform character classification and conversion, string manipulation,
memory management, mathematical functions, and system
related operations.

Each function description includes a synopsis and details on using the
function. The synopsis shows how the function and arguments would look
if written as a C function definition, even if the actual function is a macro
or is written in assembly language.

For example, the synopsis for fopen appears as follows:

#include <stdio.h>

FILE *fopen(name,action)

char *name, *action;

The C Standard Library

The C Standard Library
Chapter 5

5-2

The synopsis indicates that the function fopen requires the header file
<stdio.h>, returns a pointer to a structure of type FILE, and requires two
arguments, both pointers to a character string. The argument names are
suggestions only; you can use any name.

When an error occurs, C functions typically return an error code in the
global variable errno. You must include the file <errno.h> in C programs
so that errno will be declared.

ANSI Library Functions

asctime clock ctime difftim
gmtime localtime memchar memcmp
memcpy memmove memset mktime
time

Character Classification Functions

The character classification functions are really macros defined in
<ctype.h>. Be careful when using these macros to avoid macro expansion
side-effects. The macros provide a machine independent method of
character classification:

isalnum isalpha isascii iscntrl
isdigit islower isprint ispunct
isspace isupper isxdigit

Character Conversion Functions

The character conversion functions provide the ability to convert a string
of characters to their numeric representation and to change the case
of characters:

_atou _tolower _toupper atof
atoi atol toascii tolower
toupper

The C Standard Library
Chapter 5

5-3

Mathematical Functions

Transcendental and algebraic math functions provided in the Microware
standard library are actually hooks into the OS-9 math trap handlers. If, for
example, the math handler were replaced with a handler that accessed
floating point hardware, the application program would require absolutely
no changes to use the new trap handler. The math functions included in the
standard library are those found on most UNIX systems:

abs acos asin atan
ceil cos exp fabs
floor frexp hypot ldexp
log log10 modf pow
sin sqrt tan

Memory Management Functions

The standard library provides for a suite of functions for requesting and
freeing memory in a machine and operating system independent manner.
Various flavors of UNIX contain different functions, but generally provide
the same results. The memory management functions provided are:

_lcalloc _lfree _lmalloc _lrealloc
_mallocmin calloc free malloc
realloc sbrk

For special use with OS-9, additional functions are available for
increased efficiency:

_freemem _srqmem _srtmem ebrk
ibrk

Miscellaneous Functions

Several miscellaneous functions appear in the standard library that relieve
you from routine tasks:

_errmsg _prgname _strass closedir
freemem longjmp mktemp opendir
qsort readdir rewinddir seekdir
setjmp stacksiz system telldir

The C Standard Library
Chapter 5

5-4

OS-9 System Functions

The standard library provides a large number of functions to directly
access OS-9 system calls. The following functions are available to provide
access to selected OS-9 system calls:

_cmpnam _cpymem _ev_creat
_ev_delete _ev_info _ev_link
_ev_pulse _ev_read _ev_set
_ev_setr _ev_signal _ev_unlink
_ev_wait _ev_waitr _get_module_dir
_get_process_desc _get_process_table _getsys
_gs_devn _gs_eof _gs_gfd
_gs_opt _gs_pos _gs_rdy
_gs_size _julian _mkdata_module
_parsepath _prsnam _setcrc
_setsys _ss_attr _ss_dcoff
_ss_dcon _ss_dsrts _ss_enrts
_ss_lock _ss_opt _ss_pfd
_ss_rel _ss_rest _ss_size
_ss_ssig _ss_tiks _ss_wtrk
_sysdate _sysdbg alm_atdate
alm_atjul alm_cycle alm_delete
alm_set attach chain
chainc chxdir crc
create detach getstat
intercept makdir make_module
modcload modlink modload
modloadp munlink munload
os9exec os9fork os9forkc
readln setstat sigmask
srqcmem tsleep unlinkx
writeln

The C Standard Library
Chapter 5

5-5

Standard I/O Functions

The following functions make up the standard I/O functions of the C
library. The functions accept arguments, return values, and generally
behave according to the K&R (and UNIX) library functions. All of these
functions require that you include the <stdio.h> header file:

cleareof clearerr fclose fdopen
feof ferror fflush fgetc
fgets fileno fopen fprintf
fputs fread freopen fscanf
fseek ftell fwrite getc
getchar gets getw pffinit
pflinit printf putc putchar
puts putw rewind scanf
setbuf sprintf sscanf ungetc

String Handling Functions

The C language does not have a character string data type. Instead, it stores
strings as character arrays and the standard library provides functions to
manipulate them:

findnstr findstr index rindex
strcat strcmp strcpy strhcpy
strlen strncat strncmp strncpy

Terminal Manipulation Functions (Termcap)

tgetent tgetflag tgetnum tgetstr
tgoto tputs

The C Standard Library
Chapter 5

5-6

UNIX-like System Functions

Because many C programs are written for the UNIX operating system,
numerous UNIX functions are used in those programs. To help provide
portability, many of those functions are supported by this compiler. Most
of them have very similar equivalent system calls in OS-9, others are
emulated. Some UNIX system calls cannot be conveniently emulated and
do not appear in the library.

Even though the system call has the same name as the UNIX equivalent
and performs essentially the same operation, check the discussion of the
function for any subtle differences (like the mode values on open()).

The following are the UNIX-like system calls appearing in the standard
library. The function descriptions for these functions categorize them as
being UNIX System functions:

_exit access chdir chmod
chown close creat dup
exit getenv getime getpid
getuid kill lseek mknod
open pause prerr read
setime setpr setuid sleep
unlink wait write

The C Standard Library
Chapter 5

5-7

Alpha to Unsigned Conversion

Synopsis

unsigned _atou(string)

char *string;

Function

_atou() converts a string into its appropriate unsigned numeric value, if
possible. string points to a string that contains a printable representation of
a number expressed in the following format: [+/–]<digits>. _atou() treats
long and int values identically.

Compare Two Strings

Synopsis

int _cmpnam(target, pattern, patlen)

char *target, /* pointer to target string */

 pattern; / pointer to string pattern for comparison */

int patlen; /* length of pattern string */

Function

_cmpnam() performs a name comparison using the OS-9 system call
F$CmpNam. _cmpnam() compares the target string to the pattern string to
determine if they are the same. The target name must be terminated by a
null byte. Upper and lower case are considered to match.

Two metacharacters are recognized in the pattern string: a question mark
(?) matches any single character and an asterisk (*) matches any string
of characters.

_cmpnam() returns 0 if the strings match. –1 is returned if no
match occurs.

See Also

F$CmpNam in the OS-9 Technical Manual.

_atou()

_cmpnam()

The C Standard Library
Chapter 5

5-8

Copy External Memory

Synopsis

int _cpymem(pid, count, from, into)

short pid; /* process ID */

int count; /* number of bytes to copy */

char *from, /* pointer to memory to copy */

 into; / pointer to copy buffer */

Function

_cpymem() copies memory owned by another process (or the system) into
the buffer pointed to by into. from is the address in the process’s address
space from which to copy. pid is the process ID number of the external
process. If pid is zero, the system’s address space is assumed. count is the
number of bytes to copy. _cpymem returns –1 if an error occurs. The
appropriate error code is placed in the global variable errno.

See Also

F$CpyMem in the OS-9 Technical Manual.

_cpymem()

The C Standard Library
Chapter 5

5-9

Print an Error Message

Synopsis

int _errmsg(nerr, msg[, arg1, arg2, arg3])

int nerr; /* error number */

char *msg; /* pointer to error message */

Function

_errmsg() displays an error message on the standard error path along
with the name of the program. The message string msg is displayed in the
following format:

prog: <message text>

Important: prog is the module name of the program and <message text>
is the string passed in msg.

For added flexibility in message printing, the msg string can be a
conversion string suitable for fprintf() with up to three additional
arguments of any integral type. nerr is returned as the value of the
function so _errmsg() can be used as a parameter to a function such as
exit() or prerr().

Example

Assume the program calling the function is named foobar:

Call: _errmsg(1,“programmed message\n”);

Prints: foobar: programmed message

Call: exit(_errmsg(errno,“unknown option ’%c’\n”,’q’));

Prints: foobar: unknown option ’q’

Then exits with error code in errno.

See Also

fprintf() , _prgname()

_errmsg()

The C Standard Library
Chapter 5

5-10

Create Event

Synopsis

#include <events.h>

int _ev_creat(ev_value, wait_inc, signal_inc, ev_name)

int ev_value, /* initial value of event */

 wait_inc, /* event wait increment */

 signal_inc; /* event occurrence increment */

char *ev_name; /* pointer to event name */

Function

_ev_creat() creates an event. ev_name is a pointer to a string containing
the name of the event. ev_value is the initial value for the event. wait_inc
and signal_inc are increments applied to the event each time the event
occurs or is waited for. An event ID number is returned if the event is
successfully created.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_creat()

The C Standard Library
Chapter 5

5-11

Delete Event

Synopsis

#include <events.h>

int _ev_delete(ev_name)

char *ev_name; /* pointer to event name */

Function

_ev_delete() deletes an event. ev_name is a pointer to a string
containing the name of the event. The use count for the event must be zero
before the event can be deleted.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_delete()

The C Standard Library
Chapter 5

5-12

Obtain Event Information

Synopsis

#include <events.h>

int _ev_info(ev_index, ev_buffer)
int _ev_index; /* place to begin search in event table */
event *ev_buffer; /* pointer to buffer for event information */

Function

_ev_info() returns information about an event. The event table is indexed
from zero to one less than the maximum number of events allowed on the
system. ev_index corresponds to the starting point in the event table to
search for an event. ev_buffer is a pointer to the event struct buffer used
to hold the event information if found.

–1 is returned if ev_index is greater than all active events in the table and
the appropriate error code is placed in the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

Link to Existing Event

Synopsis

#include <events.h>

int _ev_link(ev_name)
char *ev_name; /* pointer to event name */

Function

_ev_link links to an existing event. ev_name is a pointer to a string
containing the name of the event. An event ID number is returned if the
event is successfully linked.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_info()

_ev_link()

The C Standard Library
Chapter 5

5-13

Signal Event Occurrence

Synopsis

#include <events.h>

int _ev_pulse(ev_id, ev_value, allflag)

int ev_id, /* event ID */

 ev_value; /* value to which event is set */

short allflag; /* if 0x0000: first waiting proc is activated */

/* 0x8000: all waiting procs are activated */

Function

_ev_pulse() indicates that an event has occurred. ev_id is the event ID
returned from _ev_creat() or _ev_link(). The event variable is set to the
value given by ev_value, the normal signal increment is not applied. The
normal event value is restored after activating processes, if any. If allflag is
zero, the first process waiting for the event is activated. If allflag is
0x8000, all processes waiting for the event that have a value in range
are activated.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_pulse()

The C Standard Library
Chapter 5

5-14

Read Event Without Waiting

Synopsis

#include <events.h>

int _ev_read(ev_id)
int ev_id; /* event ID */

Function

_ev_read() reads the value of an event without waiting or affecting the
event variable. ev_id is the desired event ID number.

If an error occurs, –1 is returned and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

Set Event Variable and Signal Event Occurrence

Synopsis

#include <events.h>

int _ev_set(ev_id, ev_value, allflag)
int ev_id, /* event ID */
 ev_value; /* value to which event is set */
short allflag; /* if 0x0000: first waiting proc is activated */

/* 0x8000: all waiting procs are activated */

Function

_ev_set indicates that an event has occurred. ev_id is the event ID
returned from _ev_creat() or _ev_link(). The event variable is set to the
value given by ev_value, and the normal signal increment is not applied.
Processes waiting for the event are then activated. If allflag is zero, the first
process waiting for the event is activated. If allflag is 0x8000, all processes
waiting for the event that have a value in range are activated.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_read()

_ev_set()

The C Standard Library
Chapter 5

5-15

Set Relative Event Variable and Signal Event Occurrence

Synopsis

#include <events.h>

int _ev_setr(ev_id, ev_value, allflag)

int ev_id, /* event ID */

 ev_value; /* value to increment event */

short allflag; /* if 0x0000: first waiting proc is activated */

/* 0x8000: all waiting procs are activated */

Function

_ev_setr() indicates that an event has occurred. ev_id is the event ID
returned from _ev_creat() or _ev_link(). The event variable is incremented
by the value given by ev_value. Processes waiting for the event are then
activated. If allflag is zero, the first process waiting for the event is
activated. If allflag is 0x8000, all processes waiting for the event that have
a value in range are activated.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_setr()

The C Standard Library
Chapter 5

5-16

Signal Event Occurrence

Synopsis

#include <events.h>

int _ev_signal(ev_id, allflag)

int ev_id; /* event ID */

short allflag; /* if 0x0000: first waiting proc is activated */

/* 0x8000: all waiting procs are activated */

Function

_ev_signal() indicates that an event has occurred. ev_id is the event ID
returned from _ev_creat() or _ev_link(). The current event variable is
updated by the signal increment (given when the event was created). If
allflag is zero, the first process waiting for the event is activated. If allflag
is 0x8000, all processes waiting for the event that have a value in range
are activated.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_signal()

The C Standard Library
Chapter 5

5-17

Unlink Event

Synopsis

#include <events.h>

int _ev_unlink(ev_id)

int ev_id; /* event ID */

Function

_ev_unlink() informs the system that the event is no longer required by
this process. The link count of the event is decremented. If the event count
becomes zero, the event is not deleted. To delete an event with a link count
of zero, use _ev_delete() .

ev_id is the event ID number.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_unlink()

The C Standard Library
Chapter 5

5-18

Wait for Event

Synopsis

#include <events.h>

int _ev_wait(ev_id, ev_min, ev_max)

int ev_id, /* event ID */

 ev_min, /* minimum range value for event */

 ev_max; /* maximum range value for event */

Function

_ev_wait() waits for an event to occur. ev_id gives the ID of the event.
The event value is compared to the range values given by ev_min and
ev_max. If the event value is not in the specified range, the process waits
until some other process places the value within the range. Once in range,
the wait increment is applied to the event value. The actual event value is
returned as the value of the function.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_wait()

The C Standard Library
Chapter 5

5-19

Wait for Relative Event

Synopsis

#include <events.h>

int _ev_waitr(ev_id, ev_min, ev_max)

int ev_id, /* event ID */

 ev_min, /* minimum range value for event */

 ev_max; /* maximum range value for event */

Function

_ev_waitr waits for an event to occur. ev_id gives the ID of the event. The
event value is compared to the range values given by ev_min and ev_max.
The current event value is added to the range values before the
comparison. If the event value is not in the specified range, the process
waits until some other process places the value within the range. Once in
range, the wait increment is applied to the event value. The actual event
value is returned as the value of the function.

–1 is returned if an error occurs and the appropriate error code is placed in
the global variable errno.

See Also

F$Event in the OS-9 Technical Manual.

_ev_waitr()

The C Standard Library
Chapter 5

5-20

Task Termination

Synopsis

_exit(status)

int status; /* exit status. if 0: normal exit */

/* else = error code */

Function

_exit() causes immediate termination of a program. status provides an
indication to the parent process as to the success or failure of the program.
An exit status of zero is considered normal termination; a non-zero value is
interpreted as an error code by most programs (especially the shell). This
function never returns.

Another form of this call, exit(), flushes I/O buffers and basically cleans up
after the program before exiting.

See Also

F$Exit in the OS-9 Technical Manual.

_exit()

The C Standard Library
Chapter 5

5-21

Set Memory Reclamation Bound

Synopsis

_freemin(size)

int size; /* minimum # of bytes to return */

Function

_freemin() allows you to set the minimum size for a free block of
memory or concatenation of free blocks to be returned to the operating
system by free(). If a program is known to hog memory, you can instruct
free() never to return memory to the operating system.

If size is positive, it is used as the minimum number of bytes for a free
block of memory to be a candidate for return to the operating system.

If size is negative, free() never tries to return memory allocated by malloc()
to the system.

It is unnecessary to invoke _freemin() to return memory to the system. The
default minimum size to be returned is 4K. Any size smaller than 4K
specified by _freemin() is ignored.

_freemin() returns no value of interest.

See Also

free() , ebrk() , ibrk() , sbrk() , _freemin()

_freemin()

The C Standard Library
Chapter 5

5-22

Get Module Directory Entry

Synopsis

#include <module.h>

int _get_module_dir(buffer, count)

char *buffer; /* pointer to buffer for module dir info */

int count; /* number of bytes to copy into buffer */

Function

_get_module_dir() copies the system’s module directory into the buffer
pointed to by buffer for inspection. A maximum of count bytes are copied.
The number of bytes actually copied is returned.

If an error occurs, –1 is returned and the appropriate error code is placed in
the global variable errno.

See Also

F$GModDr in the OS-9 Technical Manual.

_get_module_dir()

The C Standard Library
Chapter 5

5-23

Get Process Descriptor Copy

Synopsis

#include <procid.h>

int _get_process_desc(pid, count, buffer)

short pid; /* process ID */

int count; /* number of bytes to copy into buffer */

procid *buffer; /* pointer to buffer for descriptor info */

Function

_get_process_desc() copies a process descriptor into the buffer pointed
to by buffer for inspection. pid is the process ID number of the desired
process. A maximum of count bytes are copied.

If an error occurs, –1 is returned and the appropriate error code is placed in
the global variable errno.

Example Call:

procid pbuf;

_get_process_desc(pid,sizeof(pbuf),&pbuf);

See Also

F$GPrDsc in the OS-9 Technical Manual.

_get_process_desc()

The C Standard Library
Chapter 5

5-24

Get Process Table Entry

Synopsis

#include <procid.h>

int _get_process_table(buffer, count)
char *buffer; /* pointer to buffer for descriptor info */
int count; /* number of bytes to copy into buffer */

Function

_get_process_table() copies the system’s process descriptor table into
the buffer pointed to by buffer for inspection. A maximum of count bytes
are copied. The number of bytes actually copied is returned.

If an error occurs, –1 is returned and the appropriate error code is placed in
the global variable errno.

See Also

The discussion of F$GPrDBT in the OS-9 Technical Manual.

Get System Global Variables

Synopsis

#include <setsys.h>

int _getsys(glob, size)
short glob; /* offset to global variable */
int size; /* size of global variable */

Function

_getsys() examines a system global variable. These variables are defined
in the sys.l system library file. The same values are defined in <setsys.h>
for C programs. Each of these variables begin with a D_ prefix. glob is the
offset to the desired variable. size is the size of the variable.

_getsys() returns the value of the variable if the examine request
succeeds. If the request fails, –1 is returned and the appropriate error code
is placed in the global variable errno.

See Also

The discussion of _setsys(); the discussion of F$SetSys in the OS-9
Technical Manual.

_get_process_table()

_get_sys()

The C Standard Library
Chapter 5

5-25

Get Device Name

Synopsis

int _gs_devn(path, buffer)

int path; /* path number */

char *buffer; /* pointer to buffer for device name */

Function

You can determine the name of the device open on a path by _gs_devn().
path is a path number of an open path and buffer is a pointer to a character
array into which the null-terminated device name is placed.

If the path number is invalid, the function returns –1 as its value and the
appropriate error code is placed in the global variable errno.

Caveats

Be sure to reserve at least 32 characters to receive the device name.

See Also

I$GetStt in the OS-9 Technical Manual.

_gs_devn()

The C Standard Library
Chapter 5

5-26

Check for End-of-File

Synopsis

int _gs_eof(path)

int path; /* path number */

Function

_gs_eof() determines if the file open on path is at end-of-file. If it is at
end-of-file, the value 1 is returned. If it is not at end-of-file, 0 is returned.

If path is invalid, –1 is returned and the appropriate error code is placed in
the global variable errno.

Caveats

_gs_eof() cannot determine end-of-file on SCF devices. SCF devices
return an E$EOF error when the EOF character is read. DO NOT use this
call if you are using the buffered I/O facility on the path. Instead,
use feof().

See Also

feof() ; I$GetStt in the OS-9 Technical Manual.

_gs_eof()

The C Standard Library
Chapter 5

5-27

Get File Descriptor Sector

Synopsis

#include <direct.h>

int _gs_gfd(path, buffer, count)

int path; /* path number */

struct fildes *buffer; /* pointer to buffer for descriptor info */

int count; /* max number of bytes to copy into buffer */

Function

_gs_gfd places a copy of the RBF file descriptor sector of the file open on
path into the buffer pointed to by buffer. A maximum of count bytes are
copied. The structure fildes declared in <direct.h> provides a convenient
means to access the file descriptor information.

If an error occurs, the function returns the value –1 and the appropriate
error value is placed in the global variable errno.

Caveats

Be sure the buffer is large enough to hold count bytes. This call is effective
only on RBF devices. Declaring the buffer as type struct fildes is perfectly
safe as this structure is predefined to be large enough for the file descriptor.

See Also

_ss_pfd() ; I$GetStt in the OS-9 Technical Manual.

_gs_gfd()

The C Standard Library
Chapter 5

5-28

Get Path Options

Synopsis

#include <sgstat.h>

int _gs_opt(path, buffer)

int path; /* path number */

struct sgbuf *buffer; /* pointer to buffer for path desc info */

Function

_gs_opt() copies the options section of the path descriptor open on path
into the buffer pointed to by buffer. sgbuf provides a convenient means to
access the individual option values. sgbuf is declared in <sgstat.h>

If the path is invalid, _gs_opt() returns the value –1 and the appropriate
error code is placed in the variable errno.

Caveats

Be sure the buffer is large enough to hold the options. Declaring the buffer
as type struct sgbuf is perfectly safe as this structure is predefined to be
large enough for the options.

See Also

_ss_opt() ; I$GetStt in the OS-9 Technical Manual.

_gs_opt()

The C Standard Library
Chapter 5

5-29

Get Current File Position

Synopsis

int _gs_pos(path)

int path; /* path number */

Function

_gs_pos() returns the value of the file pointer for the file open on path.

If the path is invalid or the device is not an RBF device, –1 is returned as
the function value and the appropriate error code is placed in the global
variable errno.

Caveats

This call is effective only on RBF devices. It is unique to OS-9; the
equivalent portable call is lseek(). DO NOT use this call if buffered I/O is
being performed on the path; instead use ftell().

See Also

lseek() ; I$GetStt in the OS-9 Technical Manual.

_gs_pos()

The C Standard Library
Chapter 5

5-30

Test for Data Available

Synopsis

int _gs_rdy(path)

int path; /* path number */

Function

_gs_rdy() checks the SCF device open on path to see if data is waiting to
be read. Read requests to OS-9 wait until enough bytes have been read to
satisfy the byte count given, thereby suspending the program until the read
is satisfied.

A program can use this function to determine the number of bytes, if any,
waiting to be read, and then issue a read request for only the number of
bytes actually received.

If the path is invalid, no data is available to be read, or the device is not a
SCF device, a value of –1 is returned as the function value and the
appropriate error code is placed in the global variable errno. Otherwise, the
number of bytes available to be read is returned.

Caveats

This call is effective only on SCF or pipe devices. This function is not
intended for use with the buffered I/O calls (like getc); unpredictable
results may occur. Use low-level functions when using _gs_rdy().

See Also

read() , readln() ; I$GetStt in the OS-9 Technical Manual.

_gs_rdy()

The C Standard Library
Chapter 5

5-31

Get Current File Size

Synopsis

int _gs_size(path)

int path; /* path number */

Function

_gs_size() determines the current size of the file open on path. If the path
is invalid or the device is not a RBF device, a value of –1 is returned as the
function value and the appropriate error code is placed in the global
variable errno. Otherwise, the size of the file is returned.

Caveats

This call is effective only on RBF devices.

See Also

I$GetStt in the OS-9 Technical Manual.

_gs_size()

The C Standard Library
Chapter 5

5-32

Convert Date/Time to Julian Value

Synopsis

int _julian(time, date)

int *time, /* pointer to time value */

 date; / pointer to date value */

Function

_julian() converts the time and date from standard OS-9 format to the
Julian equivalents. Note that time and date are pointers to the OS-9 format
values. The following format is assumed:

0 hour (0–23) minute second

year (2–bytes) month day

byte 0 byte 1 byte 3byte 2

time:

date:

_julian() modifies the objects to which its arguments point as follows:

time:

date:

Seconds since midnight (0–86399)

Julian Day Number

If an error occurs, a value of –1 is returned as the function value and the
appropriate error code is placed in the global variable errno.

_julian()

The C Standard Library
Chapter 5

5-33

Example

main()

{

 int date,time,tick;

 short day;

 _sysdate(0,&time,&date,&day,&tick);

 _julian(&time,&date);

 printf(“The Julian date is %d. \

 Cinderella dies in %d seconds!\n”,date,86400–time);

}

Caveats

Be careful to pass pointers for date and time values.

See Also

_sysdate() ; F$Time , F$Julian in the OS-9 Technical Manual.

The C Standard Library
Chapter 5

5-34

Allocate Storage for Array (Low-Overhead)

Synopsis

void *_lcalloc(nel, elsize)

unsigned long nel, /* number of elements in array */

 elsize; /* size of elements */

Function

This function allocates space for an array. nel is the number of elements in
the array, and elsize is the size of each element. The allocated memory is
cleared to zeroes.

This function calls _lmalloc() to allocate memory. If the allocation is
successful, _lcalloc() returns a pointer to the area. If the allocation fails,
_lcalloc() returns zero (NULL).

Important: Use of the low-overhead allocation functions (_lcalloc(),
_lmalloc(), _lrealloc()) instead of the general allocation functions (calloc(),
malloc(), realloc()) saves eight bytes per allocation because the
low-overhead functions do not save the allocation size or the 4-byte
check value.

Caveats

Extreme care should be used to insure that only the memory assigned is
accessed. Modifying addresses immediately above or below the assigned
memory causes unpredictable program results.

The low-overhead functions require that the programmer keep track of the
sizes of allocated spaces in memory. (Note the _lfree() and
_lrealloc() parameters.)

See Also

_srqmem() , _srtmem() , _lfree() , _lmalloc() , _lrealloc()

_Icalloc()

The C Standard Library
Chapter 5

5-35

Return Memory (Low-Overhead)

Synopsis

void _lfree(ptr, size)

void *ptr; /* pointer to memory to be returned */

unsigned long size; /* size of memory to be returned */

Function

_lfree() returns a block of memory granted by _lcalloc() or _lmalloc().
The memory is returned to a pool of memory for later re-use by _lcalloc()
or _lmalloc().

_lfree() never returns an error.

Important: Use of the low-overhead allocation functions (_lcalloc(),
_lmalloc(), _lrealloc()) instead of the general allocation functions (calloc(),
malloc(), realloc()) saves eight bytes per allocation because the
low-overhead functions do not save the allocation size or the 4-byte
check value.

Caveats

If _lfree() is used with something other than a pointer returned by
_lmalloc() or _lcalloc(), the memory lists maintained by _lmalloc() will be
corrupted and programs may behave unpredictably.

The low-overhead functions require that the programmer keep track of the
sizes of allocated spaces in memory.

See Also

_lcalloc() , _lmalloc() , _lrealloc()

_lfree()

The C Standard Library
Chapter 5

5-36

Allocate Memory from an Arena (Low-Overhead)

Synopsis

void *_lmalloc(size)

unsigned long size; /* size of memory block to allocate */

Function

_lmalloc() returns a pointer to a block of memory of size bytes. The
pointer is suitably aligned for storage of data of any type.

_lmalloc() maintains an amount of memory called an arena from which
it grants memory requests. _lmalloc() will search its arena for a block of
free memory large enough for the request and, in the process, coalesce
adjacent blocks of free space returned by the _lfree() function. If sufficient
memory is not available in the arena, _lmalloc() calls _srqmem() to get
more memory from the system.

_lmalloc() returns zero (NULL) if there is no available memory or if the
arena is detected to be corrupted.

Important: Use of the low-overhead allocation functions (_lcalloc(),
_lmalloc(), _lrealloc()) instead of the general allocation functions (calloc(),
malloc(), realloc()) saves eight bytes per allocation because the
low-overhead functions do not save the allocation size or the 4-byte
check value.

Caveats

Extreme care should be used to insure that only the memory assigned by
_lmalloc() is accessed. Modifying addresses immediately above or below
the assigned memory or passing _lfree() a value not assigned by _lmalloc()
causes unpredictable program results.

The low-overhead functions require that the programmer keep track of the
sizes of allocated spaces in memory. (Note the _lfree() and
_lrealloc() parameters.)

See Also

_lcalloc() , _lfree() , _lrealloc()

_Imalloc()

The C Standard Library
Chapter 5

5-37

Resize a Block of Memory (Low-Overhead)

Synopsis

void *_lrealloc(oldptr, newsize, oldsize)

void *oldptr; /* old pointer to block of memory */

unsigned long newsize; /* size of new memory block */

 oldsize; /* size of old memory block */

Function

_lrealloc() re-sizes a block of memory pointed to by oldptr. oldptr
should be a value returned by a previous _lmalloc(), _lcalloc() or
_lrealloc().

_lrealloc() returns a pointer to a new block of memory. The size of this
new block is specified by newsize. The pointer is aligned to store data of
any type.

If newsize is smaller than oldsize, the contents of the old block are
truncated and placed in the new block. Otherwise, the entirety of the old
block’s contents begin the new block.

The results of _lrealloc(NULL,newsize,0) and _lmalloc(size) are the same.

_lrealloc() returns zero (NULL) if the requested memory is not
available or newsize is specified as zero.

Important: Use of the low-overhead allocation functions (_lcalloc(),
_lmalloc(), _lrealloc()) instead of the general allocation functions (calloc(),
malloc(), realloc()) saves eight bytes per allocation because the
low-overhead functions do not save the allocation size or the 4-byte
check value.

Caveat

The low-overhead functions require that the programmer keep track of the
sizes of allocated spaces in memory.

See Also

_freemin() , _lcalloc() , _lfree() , _lmalloc()

_Irealloc()

The C Standard Library
Chapter 5

5-38

Set Minimum Allocation Size

Synopsis

_mallocmin(size)

unsigned size; /* minimum allocation size in bytes */

Function

_mallocmin() sets the minimum amount of memory that allocation
functions may request through srqmem(). The size parameter cannot be
less than the system memory block size. If a smaller size is requested, size
is automatically set to the system memory block size.

OS-9 allows each process only 32 different memory segments; therefore,
size should be increased if a program requires a great amount of memory.
The extra space may be necessary if memory is fragmented.

_mallocmin() never returns an error.

See Also

_lcalloc() , _lmalloc() , _lrealloc() , calloc() , malloc() , realloc()

_mallocmin()

The C Standard Library
Chapter 5

5-39

Create a Data Memory Module

Synopsis

#include <module.h>

char *_mkdata_module(name, size, attr, perm)

char *name; /* pointer to name of module */

unsigned size; /* size of module in bytes */

short attr, /* module attribute/revision */

 perm; /* module access permissions */

Function

_mkdata_module() creates a data memory module. Other processes on the
system can then access the data module by modlink() . name is the desired
name of the module. size is the size in bytes of the module. attr is the
attribute/revision word, and perm is the access permission word. The
memory in the data module is initially cleared to zeroes.

Important: The size value does not include the module header and CRC
bytes. The size given is the amount of memory available for actual use.

_mkdata_module() returns a pointer to the beginning of the
module header.

If the data module cannot be created, a value of –1 is returned and the
appropriate error code is placed in the global variable errno.

See Also

F$DatMod in the OS-9 Technical Manual.

_mkdata_module()

The C Standard Library
Chapter 5

5-40

Parse Disk File (RBF) Pathlist

Synopsis

int _parsepath(string)

char *string; /* pointer to pathlist */

Function

_parsepath() parses a disk file (RBF) pathlist. string is a pointer to a
pathlist. This function is useful for programs that must determine the
validity of a pathlist name without actually creating or opening a file.

_parsepath() returns the number of bytes in the valid pathlist. If RBF
does not accept the pathlist as valid, _parsepath() returns –1.

See Also

_prsnam() ; F$PrsNam in the OS-9 Technical Manual.

Get Module Name

Synopsis

char *_prgname()

Function

_prgname() returns a pointer to the name of the module being executed.
Normally, the argv[0] string indicates the name of the program as invoked
by the parent process via os9exec(). You can use _prgname() to determine
the actual name of the module as it appears in the module directory.

Caveats

If the code that calls this function is executing in a trap handler, the name
of the trap handler module is returned.

See Also

_errmsg()

_parsepath()

_prgname()

The C Standard Library
Chapter 5

5-41

Parse Path Name Segment

Synopsis

int _prsnam(string)

char *string; /* pointer to path name segment */

Function

_prsnam() parses a path name segment using the F$PrsNam system call.
string is a pointer to a path segment.

_prsnam() returns the number of characters in a valid path name segment.
If the path name segment is invalid, _prsnam() returns –1. You can use
_parsenam() to determine if a path is a valid disk file (RBF) pathlist.

You can use successive calls to _prsnam() to parse a complete path name.

See Also

_parsepath() ; F$PrsNam in the OS-9 Technical Manual.

Re-Validate Module CRC

Synopsis

#include <module.h>

int _setcrc(module)

mod_exec *module /* pointer to executable memory module */

Function

_setcrc() updates the header parity and CRC of a module in memory.
The module must have correct size and sync bytes; other parts of the
module are not checked.

_setcrc() returns –1 and the appropriate error code in the global variable
errno if an error occurs.

See Also

F$SetCRC in the OS-9 Technical Manual.

_prsnam()

_setcrc()

The C Standard Library
Chapter 5

5-42

Set/Examine System Global Variables

Synopsis

#include <setsys.h>

int _setsys(glob, size[, value])

short glob; /* global variable */

int size; /* size of global variable */

[int value;] /* if given, value to set variable */

Function

Use _setsys() to change or examine a system global variable. These
variables are defined in LIB/sys.l. The same values are defined in
<setsys.h> for use by C programs. These variables begin with a D_ prefix.
glob is the offset to the desired variable. size is the size of the variable.
size & 0x80000000 is used to examine the variable. value is an optional
argument used only when changing a variable.

_setsys() returns the value of the variable on an examination request. On
a change request, _setsys() returns the value of the variable before
the change.

_setsys() returns –1 and the appropriate error code in the global variable
errno if the examine or change request fails.

Important: Use _getsys() to examine variables without the possibility of
accidental change.

See Also

_getsys() ; F$SetSys in the OS-9 Technical Manual.

_setsys()

The C Standard Library
Chapter 5

5-43

System Memory Request

Synopsis

char *_srqmem(size)

unsigned size; /* requested number of bytes */

Function

When tight control over memory allocation is required, _srqmem() and the
complementary function _srtmem() are provided to request and return
system memory.

This function is a direct hook into the OS-9 F$SRqMem system call. The
specified size is rounded to a system-defined block size. A size of 0xffffffff
obtains the largest contiguous block of free memory in the system. The
global unsigned variable _srqsiz may be examined to determine the actual
size of the block allocated.

If successful, a pointer to the memory granted is returned. If the request
was not granted, _srqmem() returns the value –1 and the appropriate error
code is left in the global variable errno.

The pointer returned always begins on an even byte boundary. Take care to
preserve the value of the pointer if the memory is to be returned
via _srtmem().

Caveats

The F$SrqMem request is actually intended for system level use, but the
extended addressing range of the 68000 required some method to obtain
memory without regard to where the memory is physically located.

A user process may have up to 32 non-contiguous F$SrqMem requests
active at a given time. Ideally, the requests should be as large as practical,
and preferably some multiple of 1K.

See Also

sbrk() , ibrk() , ebrk() , _srtmem() , malloc() , free()

_srqmem()

The C Standard Library
Chapter 5

5-44

System Memory Return

Synopsis

int _srtmem(size, ptr)

unsigned size; /* number of bytes to return */

char *ptr; /* pointer to memory to return */

Function

_srtmem() is a direct hook into the OS-9 F$SRtMem system call. It is
used to return memory granted by _srqmem(). Care should be taken to
ensure that size and ptr are the same as those returned by _srqmem().

If an error occurs, the function returns the value –1 and the appropriate
error code is placed in the global variable errno.

See Also

sbrk() , ibrk() , ebrk() , _srqmem() , malloc() , free()

_srtmem()

The C Standard Library
Chapter 5

5-45

Set File Attributes

Synopsis

int _ss_attr(path, attr)

int path; /* path number */

short attr; /* file attributes to set */

Function

_ss_attr() changes a disk file’s attributes. _gs_gfd() determines the
current attributes of a file. Only the owner of the file or the super user can
change the attributes of a file.

The attributes selected in the word attr are set in the file open on path. The
header file <modes.h> defines the valid mode values.

If an error occurs, _ss_attr() returns –1 as its value and the appropriate
error code is placed in the global variable errno.

Caveats

This function is effective even if the owner or super user does not have
write permission to the path. It is not permitted to set the directory bit of a
non-directory file or to clear the directory bit of a directory that is
not empty.

See Also

_gs_gfd() , _ss_pfd() ; I$SetStt in the OS-9 Technical Manual.

_ss_attr()

The C Standard Library
Chapter 5

5-46

Send Data Carrier Lost Signal to Process

Synopsis

int _ss_dcoff(path, sigcode)

int path; /* path number */

short sigcode; /* signal code to send */

Function

_ss_dcoff() sends a signal (sigcode) to the calling process when the “data
carrier detect line” associated with the device is lost. –1 is returned and
errno set if unable to register the signal.

See Also

I$SetStt in the OS-9 Technical Manual.

Send Data Carrier Present Signal to Process

Synopsis

SYNOPSIS: int _ss_dcon(path, sigcode)

int path; /* path number */

short sigcode; /* signal code to send */

Function

_ss_dcon sends a signal (sigcode) to the calling process when the “data
carrier detect line” associated with the device is present. –1 is returned and
errno is set if unable to register the signal.

See Also

I$SetStt in the OS-9 Technical Manual.

_ss_dcoff()

_ss_dcon()

The C Standard Library
Chapter 5

5-47

Disables RTS Line

Synopsis

int _ss_dsrts(path)

int path; /* path number */

Function

_ss_dsrts() disables the RTS line for the device open on path. –1 is
returned and errno is set on failure to disable RTS line.

See Also

I$SetStt in the OS-9 Technical Manual.

Enables RTS Line

Synopsis

int _ss_enrts(path)

int path; /* path number */

Function

_ss_enrts() enables the RTS line for the device open on path. –1 is
returned and errno is set on failure to enable the RTS line.

See Also

I$SetStt in the OS-9 Technical Manual.

_ss_dsrts()

_ss_enrts()

The C Standard Library
Chapter 5

5-48

Lock Out a Record

Synopsis

int _ss_lock(path, locksize)

int path; /* path number */

unsigned locksize; /* number of bytes to lock of file */

/* if 0, all locks removed */

/* if 0xffffffff, entire file locked out */

Function

_ss_lock() locks out a section of the file open on path from the current
file position up to the number of bytes specified by locksize.

If locksize is zero, all locks (record-lock, EOF lock, and file lock) are
removed. If a locksize of 0xffffffff is requested, the entire file is locked out
regardless of where the file pointer is. This is a special type of file lock that
remains in effect until released by _ss_lock(path,0), a read or write of zero
bytes, or the file is closed.

If an error occurs, _ss_lock() returns –1 as its value and the appropriate
error code is placed in the global variable errno.

See Also

I$SetStt and the section on RBF record-locking in the OS-9
Technical Manual.

_ss_lock()

The C Standard Library
Chapter 5

5-49

Set Path Options

Synopsis

#include <sgstat.h>

_ss_opt(path, buffer)

int path; /* path number */

struct sgbuf *buffer; /* pointer to buffer for path desc info */

Function

_ss_opt() copies the buffer pointed to by buffer into the options section of
the path descriptor open on path.

Generally, a program gets the options with _gs_opt(), changes the desired
values, and updates the path options with _ss_opt(). The structure sgbuf
declared in <sgstat.h> provides a convenient means to access the
individual option values.

If the path was invalid, _ss_opt() returns –1 and the appropriate error code
is left in the variable errno.

Caveats

It is common practice to preserve a copy of the original options so the
program can restore them prior to exiting. The option changes take effect
on the currently open path (and any paths created with I$Dup to the same).

See Also

_gs_opt() ; I$SetStt in the OS-9 Technical Manual; tmode in Using
Professional OS-9.

_ss_opt()

The C Standard Library
Chapter 5

5-50

Put File Descriptor Sector

Synopsis

#include <direct.h>

int _ss_pfd(path, buffer)

int path; /* path number */

struct fildes *buffer; /* pointer to buffer for file desc info */

Function

_ss_pfd() copies certain bytes from the buffer pointed to by buffer into
the file descriptor sector of the file open on path. The buffer is usually
obtained from _gs_gfd(). Only the owner ID, the modification date, and
creation date are changed.

The structure fildes declared in <direct.h> provides a convenient means to
access the file descriptor information.

If an error occurs, the function returns the value –1 and the appropriate
error value is placed in the global variable errno.

Caveats

The buffer must be at least 32 bytes long or garbage could be written into
the file descriptor sector. Only the superuser can change the owner ID
field. It is impossible to change the file attributes with this call. Instead,
use _ss_attr().

See Also

_gs_gfd() ; I$SetStt and the RBF File Manager in the OS-9
Technical Manual.

_ss_pfd()

The C Standard Library
Chapter 5

5-51

Release Device

Synopsis

int _ss_rel(path)

int path; /* path number */

Function

_ss_rel() cancels the signal to be sent from a device on data ready.
_ss_ssig() enables a device to send a signal to a process when data
is available.

If an error occurs, _ss_rel returns the value –1 and the appropriate error
value is placed in the global variable errno.

Caveats

The signal request is also cancelled when the issuing process dies or closes
the path to the device. This feature exists only on SCF devices.

See Also

_ss_ssig() ; I$SetStt in the OS-9 Technical Manual.

_ss_rel()

The C Standard Library
Chapter 5

5-52

Restore Device

Synopsis

int _ss_rest(path)
int path; /* path number */

Function

_ss_rest() causes an RBF device to restore the disk head to track zero
and is usually used for disk formatting and error recovery.

If an error occurs, the function returns the value –1 and the appropriate
error value is placed in the global variable errno.

See Also

I$SetStt in the OS-9 Technical Manual.

Set Current File Size

Synopsis

int _ss_size(path, size)

int path; /* path number */
int size; /* new size of file in bytes */

Function

_ss_size() changes the size of the file open on path. The size change
is immediate.

If the size of the file is decreased, the freed sectors are returned to the
system. If the size is increased, sectors with undefined contents are added
to the file.

If the path is invalid or the device is not a RBF device, a value of –1 is
returned as the function value and the appropriate error code is placed in
the global variable errno.

Caveats

This call is effective only on RBF devices.

See Also

I$SetStt in the OS-9 Technical Manual.

_ss_rest()

_ss_size()

The C Standard Library
Chapter 5

5-53

Send Signal on Data Ready

Synopsis

_ss_ssig(path, sigcode)

int path; /* path number */

short sigcode; /* signal code to send */

Function

_ss_ssig() sets up a signal to send to the calling process when an
interactive device has data ready. When data is received on the device
indicated by path, the signal sigcode is sent to the calling process.

_ss_ssig() must be called each time the signal is sent if it is to be used
again.

The device is considered busy and returns an error if any read requests
arrive before the signal is sent. Write requests to the device are allowed
while in this state.

If an error occurs, the function returns the value –1 and the appropriate
error value is placed in the global variable errno.

Caveats

This feature exists only on SCF devices and pipes.

See Also

_ss_rel() ; I$SetStt in the OS-9 Technical Manual.

_ss_ssig()

The C Standard Library
Chapter 5

5-54

Wait for Record Release

Synopsis

int _ss_tiks(path, tickcnt)

int path; /* path number */

int tickcnt; /* number of ticks to wait for lock */

/* if 0, record is released immediately */

/* if 1, error returned if not released */

Function

If a read or write request is issued for a part of a file that is locked out by
another user, RBF normally sleeps indefinitely until the conflict is
removed. _ss_tiks() may be used to cause an error (E$Lock) to return to
the program if the conflict still exists after a specified number of ticks
have elapsed.

tickcnt specifies the number of ticks to wait if a record-lock conflict
occurs with the file open on path. A tick count of zero (RBF’s default)
causes a sleep until the record is released. A tick count of one means that if
the record is not released immediately an error is to be returned.

If an error occurs, _ss_tiks() returns the value –1 and the appropriate error
value is placed in the global variable errno.

Caveats

This feature exists only on RBF devices.

See Also

_ss_rel() ; I$SetStt and the section on RBF record-locking in the OS-9
Technical Manual.

_ss_tiks()

The C Standard Library
Chapter 5

5-55

Write Track

Synopsis

int _ss_wtrk(path, trkno, siden, ilvf, trkbuf, ilvptr)

int path; /* path number */

char *trkbuf, /* pointer to track buffer image */

 ilvptr; / pointer to interleave table */

int trkno, /* track number to write */

 siden, /* side of track to write */

 ilvf; /* interleave factor */

Function

_ss_wtrk() performs a write-track operation on a disk drive. It is
essentially a direct hook into the driver’s write-track entry point.

path is the path on which the device is open. trkno is the desired track
number to write. siden is the desired side of the track on which to write.
ilvf is the interleave factor. trkbuf is the track buffer image. ilvptr is a
pointer to an interleave table.

If an error occurs, the _ss_wtrk() function returns the value –1 and the
appropriate error value is placed in the global variable errno.

Caveats

This feature exists only on RBF devices. You can obtain additional
information on actual use of this call by examining the format utility
and/or a device driver.

See Also

I$SetStt and RBF device drivers in the OS-9 Technical Manual; format in
Using Professional OS-9.

_ss_wtrk()

The C Standard Library
Chapter 5

5-56

Structure Assignment

Synopsis

_strass(to, from, count)

char *to, /* pointer to copy destination */

 from; / pointer to structure to copy */

int count; /* number of bytes to copy */

Function

Until the compiler can deal with structure assignment, this function is
useful for copying one structure to another. The variable count specifies
the number of bytes to copy from memory pointed to by from to memory
pointed to by to, regardless of contents.

Caveats

This function can move at most 65536 bytes. No regard is given to
overlapping moves.

_strass()

The C Standard Library
Chapter 5

5-57

Get Current System Date/Time

Synopsis

int _sysdate(format, time, date, day, tick)

int format, /* date/time format to return */

 time, / pointer to time value */

 date, / pointer to date value */

 tick; / pointer to tick value */

short *day; /* pointer to day of week value */

Function

_sysdate() obtains the current time, date, day of week, and clock tick
from the system. Note that all the arguments except format are pointers to
the receiving locations.

format can be any of the following:

0 = Gregorian 2 = Gregorian with ticks
1 = Julian 3 = Julian with ticks

The values are returned in the following format:

Seconds since midnight (0–86399)

Julian Day Number

0 hour (0–23) minute second

No. of ticks/second Current clock tick

byte 0 byte 1 byte 3byte 2

time:

tick:

year (2–bytes) month daydate:

day of week 0 = Sunday, 1 = Monday, ...day:

Gregorian

Gregorian

Julian

Julian

_sysdate()

The C Standard Library
Chapter 5

5-58

If an error occurs, a value of –1 is returned as the function value and the
appropriate error code is placed in the global variable errno.

Example

main()

{

 int date,time,tick;

 short day;

 .

 .

 .

 _sysdate(0,&time,&date,&day,&tick);

 .

 .

 .

}

Caveats

Be careful to pass pointers to the date, time, and day values. Also, be sure
day is declared to be a short or the value appears as day + 65536!

See Also

_julian() ; F$Julian , F$Time in the OS-9 Technical Manual.

The C Standard Library
Chapter 5

5-59

Call System Debugger

Synopsis

_sysdbg()

Function

_sysdbg() invokes the system-level debugger, if one exists. This allows
you to debug system state routines, such as drivers. The system-level
debugger runs in system state and effectively stops timesharing whenever
it is active. Only the super user can make this call.

See Also

F$SysDbg in the OS-9 Technical Manual.

Convert character to lower case

Synopsis

#include <ctype.h>

int _tolower(c)

char c; /* character to convert */

Function

_tolower() is a macro that changes the uppercase argument to lowercase.
The argument must be uppercase or garbage results. Use tolower() if the
argument is not guaranteed to be uppercase.

See Also

toupper() , isascii()

_sysdbg()

_tolower()

The C Standard Library
Chapter 5

5-60

Convert Character to Upper Case

Synopsis

#include <ctype.h>

int _toupper(c)

char c; /* character to convert */

Function

_toupper() is a macro that changes the lowercase argument to uppercase.
The argument must be lowercase or garbage will result. Use toupper() if
the argument is not guaranteed to be lowercase.

See Also

tolower() , isascii()

Integer Absolute Value

Synopsis

int abs(value)

int value; /* value to convert */

Function

abs() returns the absolute value of its integer argument.

Caveats

Applying abs() to the most negative integer yields a result which is the
most negative integer:

abs(0x80000000) returns 0x80000000 as the result.

_toupper()

abs()

The C Standard Library
Chapter 5

5-61

Determine Accessibility of a File

Synopsis

#include <modes.h>

int access(name, perm);

char *name; /* pointer to name of file */

short perm; /* file permissions to check */

Function

access() returns 0 if the mode(s) specified in perm are correct for the user
to access name.

The value for perm may be any legal OS-9 mode as defined in the header
file <modes.h>. Use a mode value of zero to verify the existence of a file.

If the file cannot be accessed, the function returns –1 and the appropriate
error code is placed in the global variable errno.

Caveats

Note that the perm value may not be compatible with other systems.

Arc Cosine

Synopsis

#include <math.h>

double acos(x)

double x;

Function

acos() returns the arc cosine of x, in the range of 0 to π. The permissible
range of x is: –1 <= x <= 1.

access()

acos()

The C Standard Library
Chapter 5

5-62

Send a Signal at Gregorian Time and Date

Synopsis

int alm_atdate(sigcode, time, date)

int sigcode; /* signal to be sent to the requester */

int time; /* time in the form 00hhmmss (see below) */

int date; /* date in the form yyyymmdd (see below) */

Function

alm_atdate() requests that a signal be sent to the requesting process at a
specific Gregorian time and date. The time and date must be in the
following format:

time:

date:

byte 0 byte 1 byte 2 byte 3

0 hour (0–23) minute second

year (two bytes) month day

Because F$STime may change the system date and time, the alm_atdate()
alarm signal is sent when the system time and date become greater than or
equal to the alarm time.

If an error occurs, alm_atdate() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, alm_atdate() returns
the alarm ID.

See Also

F$Alarm in the OS-9 Technical Manual.

alm_atdate()

The C Standard Library
Chapter 5

5-63

Send a Signal at Julian Date/Time

Synopsis

int alm_atjul(sigcode, time, date)

int sigcode; /* signal to be sent to the requester */

int time; /* number of seconds after midnight */

int date; /* Julian day number (see note below!) */

Function

alm_atjul() requests that a signal be sent to the requesting process at a
specific Julian time and date. The date parameter must contain the Julian
date on which to send the signal. The Julian date is the number of days
since 1 January 4713 B.C., the beginning of the Julian period. The time
parameter should contain the time at which to send the signal, expressed as
a number of seconds after midnight.

Important: A Julian day begins at midnight on the OS-9 kernel. (Standard
Julian days begin twelve hours earlier, at noon.) For example, 1:00 a.m.
January 2, 4713 B.C. is one hour after the beginning of Julian Day 1 on the
OS-9 kernel, but thirteen hours after the beginning in standard Julian time.

Since F$STime may change the system date and time, the alm_atjul()
alarm signal is sent when the system time and date become greater than or
equal to the alarm time.

If an error occurs, alm_atjul() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, alm_atjul() returns
the alarm ID.

See Also

F$Alarm in the OS-9 Technical Manual.

alm_atjul()

The C Standard Library
Chapter 5

5-64

Send a Signal at Specified Time Intervals

Synopsis

int alm_cycle(sigcode, timeinterval)

int sigcode; /* signal to be sent to the requester */

int timeinterval; /* periodic interval at which the */

 /* signal will be sent to the caller */

Function

alm_cycle() is similar to the alm_set() function, except that the alarm is
reset after it is sent, to provide a recurring periodic signal.

For example, if the request is made at time X, and timeinterval is t, the
signal is sent to the requesting process at times (X + t), (X + 2t), (X + 3t),
etc. until the alarm request is cancelled.

If the most significant bit of timeinterval is set, timeinterval is assumed to
be in 256ths of a second. Otherwise, timeinterval is assumed to be in units
of system clock ticks. The minimum timeinterval allowed is two system
clock ticks.

If an error occurs, alm_cycle() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, alm_cycle() returns
the alarm ID.

See Also

F$Alarm in the OS-9 Technical Manual.

alm_cycle()

The C Standard Library
Chapter 5

5-65

Remove a Pending Alarm Request

Synopsis

int alm_delete(alarmid)
int alarmid; /* alarm ID of the request to be cancelled */

Function

alm_delete() cancels the alarm request specified by alarmid. If zero is
passed as the alarm ID, all pending alarm requests are cancelled.

If an error occurs, alm_delete() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, alm_delete()
returns zero.

See Also

F$Alarm in the OS-9 Technical Manual.

Send a Signal After Specified Time Interval

Synopsis

int alm_set(sigcode, time)
int sigcode; /* signal to be sent to the requester */
int time; /* interval to pass between when the alarm */
 /* is requested and when the signal is to */
 /* be sent */

Function

alm_set() sends the signal specified by sigcode to the requesting process
after the time specified by time has elapsed. For example, if the request is
made at time X and time is t, the signal is sent at time (X + t) unless the
alarm request is cancelled.

If the most significant bit of time is set, time is assumed to be in 256ths of
a second. Otherwise, time is assumed to be in units of system clock ticks.
The minimum time allowed is two system clock ticks.

If an error occurs, alm_set() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, alm_set() returns the
alarm ID.

See Also

F$Alarm in the OS-9 Technical Manual.

alm_delete()

alm_set()

The C Standard Library
Chapter 5

5-66

Convert Broken-Down Time to String Format

Synopsis

#include <time.h>

char *asctime(tp)

struct tm *tp /* pointer to “broken–down” time structure */

Function

asctime() converts the Broken-Down time structure pointed to by tp into
the following 26 byte string format (including the terminating \0):

xxx mmm dd hh:mm:ss yyyy\n\0

xxx is one of the following days of the week:

Sun Mon Tue Wed
Thu Fri Sat

mmm is one of the following months of the year:

Jan Feb Mar Apr
May Jun Jul Aug
Sep Oct Nov Dec

Caveat

asctime() returns a pointer to a static area which may be overwritten. To
insure data integrity use the string or save it immediately.

See Also

mktime() (for the “Broken-Down” Time structure), ctime() ,
localtime() .

asctime()

The C Standard Library
Chapter 5

5-67

Arc Sine

Synopsis

#include <math.h>

double asin(x)

double x;

Function

asin() returns the arc sine of x, in the range –π/2 to π/2. The permissible
range of x is: –1 <= x <= 1.

Arc Tangent

Synopsis

#include <math.h>

double atan(x)

double x;

Function

atan() returns the arc tangent of x, in the range –π/2 to π/2.

asin()

atan()

The C Standard Library
Chapter 5

5-68

Alpha to Floating Conversion

Synopsis

#include <math.h>

double atof(string)

char *string; /* pointer to string to convert */

Function

atof() converts the string pointed to by string into its equivalent
representation in type double.

atof() recognizes the following syntax: an optional sign followed by a
digit string (possibly containing a decimal point), an optional e or E, an
optional sign, and a digit string (no decimal point):

[+/–]digits[.digits] [E/e[+/–]integer]

Caveats

Overflow causes unpredictable results. There are no error indications.

Alpha to Integer Conversion

Synopsis

int atoi(string)

char *string; /* pointer to string to convert */

Function

atoi() converts the string pointed to by string into its equivalent
representation in type int. atoi() recognizes an optional sign followed by
a digit string:

[+/–]digits

atof()

atoi()

The C Standard Library
Chapter 5

5-69

Alpha to Long Conversion

Synopsis

long atol(string)

char *string; /* pointer to string to convert */

Function

atol() converts the string specified by string into its equivalent
representation in type long. atol() recognizes an optional sign followed
by a digit string:

[+/–]digits

Attach to a Device

Synopsis

#include <modes.h>

char *attach(name, mode)

char *name; /* pointer to device name */

short mode; /* device access mode */

Function

attach() is useful to make a device known to the system or to verify that
it is already attached. If the device is not already attached, it is placed in
the system’s device table, static storage is assigned to the device, and its
initialization routine is executed. If the device is already attached, it is not
re-initialized.

The device name passed in name is attached with the access mode passed
in mode. If successful, the device table address is returned as the value of
the function.

If the attach fails, –1 is returned and the appropriate error code is placed in
the global variable errno.

See Also

I$Attach in the OS-9 Technical Manual.

atol()

attach()

The C Standard Library
Chapter 5

5-70

Allocate Storage for Array

Synopsis

char *calloc(nel, elsize)
unsigned nel, /* number of elements in array */
 elsize; /* size of elements */

Function

calloc() allocates space for an array. nel is the number of elements in the
array, and elsize is the size of each element. The allocated memory is
cleared to zeroes.

This function calls malloc() to allocate memory. If the allocation is
successful, calloc() returns a pointer to the area. If the allocation fails, 0
is returned.

Function

Use extreme care to ensure that only the memory assigned is accessed. To
modify addresses immediately above or below the assigned memory is sure
to cause unpredictable program results.

Caveats

Use extreme care to ensure that only the memory assigned is accessed. To
modify addresses immediately above or below the assigned memory is sure
to cause unpredictable program results.

See Also

mallo c(), free() , ebrk() , _srqmem() , _srtmem()

calloc()

The C Standard Library
Chapter 5

5-71

Ceiling Function

Synopsis

#include <math.h>

double ceil(x)
double x;

Function

ceil() returns the smallest integer (as a double) that is not less than x.

See Also

floor()

ceil()

The C Standard Library
Chapter 5

5-72

Load and Execute a New Module

Synopsis

chain(modname, parmsize, parmptr, type, lang, datasize, prior)

char *modname, /* pointer to program name */

 parmptr; / ptr to param string to pass to program */

int parmsize, /* size of param string */

 datasize; /* extra memory for program */

short type, /* module type of program */

 lang, /* language type of program */

 prior; /* priority to run program */

chainc(modname, parmsize, parmptr, type, lang, datasize, prior,

 pathent)

char *modname, /* pointer to program name */

 parmptr; / ptr to param string to pass to program */

int parmsize, /* size of param string */

 datasize; /* extra memory for program */

short type, /* module type of program */

 lang, /* language type of program */

 prior, /* priority to run program */

 pathent; /* number of open paths to inherit

Function

Use chain() when you need to execute an entirely new program without the
overhead of creating a new process. It is functionally equivalent to an
os9fork() followed by an exit(), but with less system overhead.

chain() effectively resets the calling process’s program and data areas and
begins execution of a new primary module. Open paths are not closed or
otherwise affected.

modname is a pointer to a null-terminated module name.

parmptr is a pointer to a null-terminated string to be passed to the new
module. parmsize is the strlen() of parmptr.

datasize gives extra memory to the new program. If no extra memory is
required, this value can be zero.

type and lang specify the desired type and language of the module;
specify these as zero to indicate any type or language.

prior is the new priority at which to run the program. Specify zero if no
priority change is desired.

chain(), chainc()

The C Standard Library
Chapter 5

5-73

If the chain is unsuccessful, chain() returns –1 and the appropriate error
code is placed in the global variable errno. If successful, chain() does not
return; the new program begins execution.

Regardless of whether the chain is successful, chain() never returns to the
caller. Therefore, it is imperative that the caller verifies that the program to
chain to exists and is executable before chaining. Use modlink() to check
the module directory for the program or modload() to check the
execution directory.

chainc() is the same as chain() with a pathent argument. pathent is the
number of open paths for the new process to inherit. os9exec() is the
preferred method by which to chain to C programs. See the discussion of
os9exec() for more details.

Caveats

Beware of chaining to a system object module. Usually, it only makes
sense to chain to a program of type object module. chain() is a historical
function and is likely to be removed in a future release. Use
chainc() instead.

See Also

os9fork() ; F$Chain , F$Fork in the OS-9 Technical Manual.

The C Standard Library
Chapter 5

5-74

Change Current Data Directory

Synopsis

chdir(dirname)

char *dirname; /* pointer to directory pathlist */

Function

chdir() changes the current data directory for the calling process. The
argument dirname is a pointer to a string that gives a pathname for
a directory.

chdir() returns 0 after a successful call. If dirname is not a directory
pathname, a value of –1 is returned and the appropriate error code is placed
in the global variable errno.

Caveats

This function changes the data directory only for the program containing
the function call, not the shell that executes the program. Use the built-in
shell command chd to change the shell’s data directory.

See Also

I$ChgDir in the OS-9 Technical Manual; chd in Using Professional OS-9.

chdir()

The C Standard Library
Chapter 5

5-75

Change File Access Permissions

Synopsis

#include <modes.h>

chmod(name, perm)

char *name; /* pointer to file name */

short perm; /* file permissions */

Function

chmod() changes the access permission bits associated with a file. name
must be a pointer to a string containing a file name, and perm should
contain the desired bit pattern.

chmod() returns 0 after a successful call. If the caller is not entitled to
change the access permissions or the file cannot be found, –1 is returned
and the appropriate error code is placed in the global variable errno.

Caveats

Only the super user or the owner of the file may change the
access permissions.

See Also

_ss_attr() ; I$SetStt in the OS-9 Technical Manual; attr in Using
Professional OS-9.

chmod()

The C Standard Library
Chapter 5

5-76

Change Owner of a File

Synopsis

chown(name, newowner)

char *name; /* pointer to file name */

int newowner; /* new owner group.user ID */

Function

chown() changes the owner number of a file. name points to the file name
to change; the new owner ID is passed in newowner.

The owner ID is made up of a group ID and a user ID. The group ID is
passed in the high order lower byte and the user ID is passed in the low
order lower byte. The owner ID, however, is stored as a word; the group
ID in the high byte and the user ID in the low byte. This will change in
future revisions of RBF.

chown() returns 0 after a successful call. If the caller is not entitled to
change the owner ID or the file cannot be found, –1 is returned and the
appropriate error code is placed in the global variable errno.

Caveats

Only the super user may change the owner ID.

See Also

_ss_pfd() ; I$SetSt in the OS-9 Technical Manual.

chown()

The C Standard Library
Chapter 5

5-77

Change Current Execution Directory

Synopsis

chxdir(dirname)

char *dirname; /* pointer to directory name */

Function

chxdir() changes the current execution directory for the calling process.
dirname is a pointer to a string that gives a pathname for a directory.

chxdir() returns 0 after a successful call. If dirname is not a directory
pathname, –1 is returned and the appropriate error code is placed in the
global variable errno.

Caveats

This function changes the execution directory only for the program
containing the function call, not the shell that executes the program. Use
the built-in shell command chx to change the shell’s execution directory.

See Also

I$ChgDir in the OS-9 Technical Manual; chx in Using Professional OS-9.

chxdir()

The C Standard Library
Chapter 5

5-78

Clear End of File Condition

Synopsis

#include <stdio.h>

cleareof(fp)

FILE *fp; /* pointer to file */

Function

clearof() resets the end-of-file condition that causes feof() to return a
non-zero value. This is useful to retry an input operation on a terminal after
end-of-file is encountered. The getc() function refuses to read characters
until the end-of-file condition is cleared.

Caveats

Be sure to give cleareof() a file pointer and not a path number. cleareof()

is implemented as a macro in <stdio.h>.

See Also

clearerr() , getc()

cleareof()

The C Standard Library
Chapter 5

5-79

Clear Error Condition

Synopsis

#include <stdio.h>

clearerr(fp)

FILE *fp; /* pointer to file */

Function

clearerr() resets the error condition that causes ferror() to return a
non-zero value. You can use this to retry an input operation on a terminal
after an error is encountered. The getc() function refuses to read characters
until the error condition is cleared.

Caveats

clearerr() resets the error condition on the file. This does not fix the file
or prevent the error condition from occurring again. Be sure to give
clearerr() a file pointer and not a path number. clearerr() is implemented
as a macro in the <stdio.h> header file.

See Also

cleareof() , getc()

clearerr()

The C Standard Library
Chapter 5

5-80

Get Processor Time

Synopsis

#include <time.h>

clock_t clock()

Function

clock() returns a value (in tick units) approximating the processor time
used by the current process. The returned value may be divided by
CLK_TCK to determine the processor time in seconds. CLK_TCK is defined
in time.h to be the number of ticks per second.

If clock() cannot determine the processor time, it returns (clock_t) –1 to
indicate an error.

Caveat

CLK_TCK is not a syntactic constant. However, it is rarely changed without
rebooting the system.

See Also

F$SetSys , F$Time in the OS-9 Technical Manual.

clock()

The C Standard Library
Chapter 5

5-81

Close a Path

Synopsis

close(path)

int path; /* path number */

Function

close() closes an open path. The path number is usually obtained by a
previous call to open(), creat(), create(), or dup(). The standard paths 0, 1,
and 2 (standard input, standard output and standard error, respectively) are
not normally closed by user programs.

If an error occurs during the close, this function returns –1 and the
appropriate error code is placed in the global variable errno.

Caveats

Be sure to use only a path number here, not a file pointer assigned
by fopen().

See Also

open() , creat() , create() , dup()

close()

The C Standard Library
Chapter 5

5-82

Closes the Named Directory Stream

Synopsis

#include <dir.h>

closedir(dirp)

dir *dirp; /* pointer to directory stream */

Function

closedir() closes the named directory stream and frees the structure
associated with dirp.

See Also

opendir() , readdir() , rewinddir() , seekdir() , telldir()

Cosine

Synopsis

#include <math.h>

double cos(x)

double x;

Function

cos() returns the cosine of x as a double float. The value of x is in radians.

closedir()

cos()

The C Standard Library
Chapter 5

5-83

Calculate Module CRC

Synopsis

#include <module.h>

crc(ptr, count, accum)

char *ptr; /* ptr to byte to start CRC calculation */

unsigned count; /* # of bytes over which to calculate CRC */

int *accum; /* pointer to CRC accumulator */

Function

crc() generates an OS-9 CRC (cyclic redundancy check) value for use by
compilers, assemblers, or other memory module generators.

The CRC is calculated starting at the byte pointed to by ptr for count bytes.
accum is a pointer to the CRC accumulator. It is unnecessary to cover the
entire module in one call; the CRC may be accumulated over several calls.
The accumulator must be initialized to –1 before the first call.

When verifying the CRC of a module, initialize the accumulator to –1 and
perform the CRC over the entire module, including the CRC bytes in the
module. If the resulting CRC is equal to the CRC constant value, the
module is valid. A manifest constant CRCCON is defined in the
<module.h> header file for this use.

To generate the CRC for a module:

 initialize the accumulator to –1
 perform the CRC over the module
 call crc() with a NULL value for ptr
 complement the CRC accumulator
 write the contents of the accumulator to the module

Caveats

The CRC value is three bytes long in a four byte field. To generate a valid
module CRC, the caller must include the byte preceding the CRC in the
calculation. crc() assumes a zero byte is to be CRCed if ptr is passed
as zero.

See Also

F$CRC in the OS-9 Technical Manual.

crc()

The C Standard Library
Chapter 5

5-84

Example

The following code fragment illustrates a technique for generating a CRC
for a module:

#include <stdio.h>

#include <module.h>

main()

{

 char *ptr;

 int count,accum = –1;

 crc(ptr,count,&accum); /* one or more calls to crc */

 crc(ptr,count,&accum); /* The final call to crc(). At this point */

 /* the entire module less the four crc */

 /* bytes have been processed. */

 crc(NULL,0,&accum); /* this is a special case to run a null */

 /* byte through the crc calculation. */

 accum = ~accum; /* complement the accumulator. Previous calls */

 /* have left the most significant byte as Oxff */

 /* Complementing changes this byte to zero */

 fwrite(&accum,1,sizeof accum,fp);

 /* finally write out the four crc bytes */

}

The C Standard Library
Chapter 5

5-85

Create a File

Synopsis

#include <modes.h>

int creat(name, mode)

char *name; /* pointer to file name */

short mode; /* access mode for file */

Function

creat() returns a path number to a new file with the name specified by a
string pointed to by name. The file is available for writing. The
permissions are given by mode. The owner of the file is the task owner.

If, however, name is the name of an existing file, the file is truncated to
zero length, and the ownership and permissions remain unchanged. The
file is open for write access.

If an error occurs, the value –1 is returned and the appropriate error code is
placed in the global variable errno.

Important: creat() does not return an error if the file exists. Use the
access() function to establish the existence of a file if it is important that a
file should not be over-written. The valid mode values are available in the
<modes.h> header file.

Caveats

It is unnecessary to specify write permissions in mode to write to the file.
You cannot create directories with this call. Instead, use mknod().

See Also

open() , create() ; I$Create , I$SetStt in the OS-9 Technical Manual.

creat()

The C Standard Library
Chapter 5

5-86

Create a File

Synopsis

#include <modes.h>

int create(name, mode, perm [,initial_size])

char *name; /* pointer to file name */

short mode, /* access permissions */

 perm; /* file permissions */

[int initial_size;] /* initial size of file (optional) */

Function

create() returns a path number to a new file with a name specified by the
string pointed to by name. The file is available for writing. mode gives the
access permissions. perm gives the file permission attributes. The owner of
the file is the task owner.

If the file already exists or any other error occurs, –1 is returned and the
appropriate error code is placed in the global variable errno. The valid
mode and permission values are available in the <modes.h> header file.

You may specify the initial_size value to indicate the file’s initial allocation
size. For disk files, the allocation is made even though the file size does
not change. For pipe files, the pipe buffer is set to this value. The
initial_size parameter may be used only if the S_ISIZE bit is set in mode.

Caveats

This function is similar to the creat() call except it allows the caller to give
the exact file attributes desired and does not truncate the file if it is already
present. You cannot create directories with this call. Instead, use mknod().

See Also

open() , creat() ; I$Create in the OS-9 Technical Manual.

create()

The C Standard Library
Chapter 5

5-87

Convert Calendar Time to String Format

Synopsis

#include <time.h>

char *ctime(t)

time_t *t; /* pointer to calendar time struct */

Function

ctime() converts the Calendar Time t into the following 26 byte string
format (including the terminating \0):

xxx mmm dd hh:mm:ss yyyy\n\0

xxx is one of the following days of the week:

Sun Mon Tue Wed
Thu Fri Sat

mmm is one of the following months of the year:

Jan Feb Mar Apr
May Jun Jul Aug
Sep Oct Nov Dec

ctime() is the exact equivalent of:

asctime(localtime(t))

Caveat

ctime() returns a pointer to a static area which may be overwritten; to
ensure data integrity use the string or save it immediately.

See Also

asctime() , localtime()

ctime()

The C Standard Library
Chapter 5

5-88

Detach a Device

Synopsis

int detach(ptr)

char *ptr; /* pointer to device returned by attach() */

Function

detach() removes a device from the system device table if it is not in use
by any other process. If this is the last use of the device, the device driver’s
termination routine is called. Any permanent storage assigned to the device
is deallocated.

ptr must be a pointer returned by the attach() call.

If an error occurs, the function returns –1 and the appropriate error code is
placed in the global variable errno.

See Also

attach() ; I$Detach in the OS-9 Technical Manual.

detach

The C Standard Library
Chapter 5

5-89

Find Temporal Difference

Synopsis

#include <time.h>

double difftime (t1, t0)

time_t t0, /* calendar time struct */

 t1; /* calendar time struct */

Function

difftime() returns the difference in seconds between t1 and t0. This value
is returned as a double. If time_t values could simply be subtracted, the
return value would be: t1 – t0.

See Also

time()

Duplicate a path

int dup(path)

int path; /* path number of path to duplicate*/

Function

Given an existing path, dup() returns a synonymous path number for the
same file or device. The lowest available path number is used.

dup() merely increments the link count of a path descriptor and returns a
different synonymous path number. The path descriptor is not cloned.

Important: It is usually not a good idea for more than one process to be
doing I/O on the same path concurrently. On RBF files, unpredictable
results may occur. Use separate I/O paths.

See Also

I$Dup in the OS-9 Technical Manual.

difftime()

dup()

The C Standard Library
Chapter 5

5-90

Obtain External Memory

Synopsis

extern int _memmins;
char *ebrk(size)
unsigned size; /* number of bytes to return */

Function

ebrk() returns a specified amount of memory (size). The memory is
obtained from the system via the F$SrqMem system request. It is intended
for general purpose memory allocation.

The blocks of memory returned by this call may not be contiguous, thereby
providing the ability to obtain a block of memory of a given size from
anywhere in the 68000 address space.

To reduce the overhead involved in requesting small quantities of memory,
ebrk() requests memory from the system in a minimum size determined by
the global variable _memmins which is initially set to 8192, and satisfy the
user requests from this memory space. ebrk() grants memory requests from
this memory space provided the requests are no larger than the amount
of space.

If the request is larger than the available space, ebrk() wastes the rest of the
space and tries to get enough memory from the system to satisfy
the request.

This method works well for programs that need to get large amounts of not
necessarily contiguous memory in little bits and cannot afford the overhead
of malloc().

Changing the _memmins variable causes ebrk() to use that value as the
F$SrqMem memory request size.

If the memory request is granted, a pointer (even-byte aligned) to the block
is returned. If the request is not granted, –1 is returned and the appropriate
error code is placed in the global variable errno.

Caveats

The memory obtained from ebrk() is not given back until the
process terminates.

See Also

sbrk() , ibrk() , malloc() ; F$SrqMem in the OS-9 Technical Manual.

ebrk()

The C Standard Library
Chapter 5

5-91

Terminate Task

Synopsis

exit(status)

short status; /* exit status: if zero, normal exit */

/* else, error code */

Function

exit() is the normal means of terminating a task. exit() does any clean
up operations required before terminating, such as flushing out any
file buffers.

An exit status of zero is considered normal termination; a non-zero value is
interpreted as an error code by most programs (especially the shell).

exit() returns no value.

See Also

The discussion of _exit(); the discussion of F$Exit in the OS-9
Technical Manual.

Exponential Function

Synopsis

#include <math.h>

double exp(x)

double x;

Function

exp() returns the value e (2.71828...) raised to the power x.

exit()

exp()

The C Standard Library
Chapter 5

5-92

Floating Absolute Value

Synopsis

#include <math.h>

double fabs(x)

double x;

Function

fabs() returns the absolute value of the argument x.

Close a File

Synopsis

#include <stdio.h>

int fclose(fp)

FILE *fp; /* pointer to file */

Function

fclose() flushes the buffer associated with file pointer fp. It closes the file
and frees the buffer for use by another call to fopen().

It is not considered an error to fclose() a file pointer that is not open, but it
is required that fp be obtained from fopen() or be one of the predefined
macros stdin, stdout, or stderr.

fclose() returns EOF if an error occurs during the close.

See Also

open() , fflush() , getc() , putc()

fabs()

fclose()

The C Standard Library
Chapter 5

5-93

Attach a Path to a File Pointer

Synopsis

#include <stdio.h>

FILE *fdopen(path,action)

int path; /* path number */

char *action; /* pointer to file action string */

Function

fdopen() returns a file pointer to the file specified by a currently open
path. The action given must be compatible with the access mode of the
path given. The valid fdopen() actions are:

Action: Description:

“r” Open for reading

“w” Open for writing

“a” Append (write) at the end of the file or create file for writing if name
does not exist

“r+” Open for update

“w+” Create for update

“a+” Create or open for update at end of file

“d’ Directory read

Use this function when you require some special processing when opening
the file that fopen() does not provide.

See Also

fopen() , freopen()

fdopen()

The C Standard Library
Chapter 5

5-94

Check Buffered File for End of File

Synopsis

#include <stdio.h>

int feof(fp)

FILE *fp; /* pointer to file */

Function

feof() is a macro used to test a file to see if it is at end-of-file. fp is a
pointer to a FILE structure (not a path number).

A non-zero value is returned if the file is at end-of-file; otherwise, a zero
is returned.

You can use the macro cleareof() to clear the end-of-file condition.

See Also

fopen() , cleareof()

feof()

The C Standard Library
Chapter 5

5-95

Check Buffered File for Error Condition

Synopsis

#include <stdio.h>

int ferror(fp)

FILE *fp; /* pointer to file */

Function

ferror() is a macro used to test a file to see if an error occurred. fp is a
pointer to a FILE structure (not a path number).

A non-zero value is returned if an error occurred from the last I/O
operation; otherwise, a zero is returned.

You can use the macro clearerr() to clear the error condition.

Caveats

There is no way to tell what error occurred or when.

See Also

fopen() , clearerr()

ferror()

The C Standard Library
Chapter 5

5-96

Flush a File’s Buffer

Synopsis

#include <stdio.h>

int fflush(fp)

FILE *fp; /* pointer to file */

Function

fflush() causes a buffer associated with the file pointer fp to be cleared
by writing out to the file. The file is written to only if it was opened for
write or update.

It is not normally necessary to call fflush(), but it can be useful in the
following instances: if the terminal is open on a path other than one of the
standard paths and the buffered output needs to be flushed before input;
or, a newline character has not yet been issued and you want to deliver the
output data to the device.

If a getc() (or equivalent) is performed on stdin, the stdout buffer is
flushed automatically.

fclose() calls fflush() to clean out the buffers before the file is closed.

See Also

fopen() , fflush() , getc() , putc()

fflush()

The C Standard Library
Chapter 5

5-97

Get a Character From a File

Synopsis

#include <stdio.h>

int fgetc(fp)
FILE *fp; /* pointer to file */

fgetc() returns a character from a file pointed to by fp. EOF is returned
on end-of-file or error.

In this implementation, fgetc() is a macro which calls getc(), which is a
genuine function. UNIX normally defines getc() as a macro and fgetc() as
a genuine function. The usage and result is the same on both systems.

getc()

Get a String From a File

Synopsis

#include <stdio.h>

char *fgets(ptr, cnt, fp)
char *ptr; /* pointer to buffer to hold characters */
int cnt; /* number of characters to read */
FILE *fp; /* pointer to file */

Function

fgets() reads characters from the file fp. It places the characters in the
buffer pointed to by the pointer ptr up to an end-of-line character (\n), but
not more than cnt-1 characters. A null byte is appended to the end of the
string. fgets() returns the first argument as its value. fgets() returns
NULL upon end-of-file.

Caveats

It is the responsibility of the caller to ensure ptr points to a buffer large
enough to hold cnt bytes.

See Also

fgetc()

fgetc()

fgets()

The C Standard Library
Chapter 5

5-98

Determine Path Number From File

Synopsis

#include <stdio.h>

int fileno(fp)
FILE *fp; /* pointer to file */

Function

fileno() returns the path number associated with file pointer fp. The path
number is not valid unless (fp–>_flag & _INIT) is non-zero.

Search String for Pattern

Synopsis

findnstr(pos, string, pattern, len)
int pos; /* position in string to begin search */
char *string, /* pointer to string to search */
 pattern; / search pattern */
int len; /* length to search */

Function

findnstr() searches the string pointed to by string for the first instance of
the pattern pointed to by pattern. It starts at position pos (where the first
position is 1, not zero). The returned value is the position of the first
matched character of the pattern in the string, or zero if a match is not
found. findnstr() stops searching only at position pos + len, so it may
continue past null bytes.

Caveats

The current implementation does not use the most efficient algorithm for
pattern matching. Use on very long strings is likely to be somewhat slower
than it should be.

See Also

findstr()

fileno()

findnstr()

The C Standard Library
Chapter 5

5-99

Search String for Pattern

Synopsis

findstr(pos, string, pattern)

int pos; /* position to begin search in string */

char *string, /* pointer to string to search */

 pattern; / pointer to search pattern */

Function

findstr() searches the string pointed to by string for the first instance of
the pattern pointed to by pattern. It starts at position pos (where the first
position is 1, not zero). The returned value is the position of the first
matched character of the pattern in the string, or zero if a match is not
found. findstr() stops searching when a null byte is found in string.

Caveats

The current implementation does not use the most efficient algorithm for
pattern matching. Use on very long strings is likely to be somewhat slower
than it should be.

See Also

findnstr()

Floor Function

Synopsis

#include <math.h>

double floor(x)

double x;

Function

floor() returns the largest integer (as a double) that is not greater than x.

findstr()

floor()

The C Standard Library
Chapter 5

5-100

Open a File

Synopsis

#include <stdio.h>

FILE *fopen(name, action)

char *name, /* pointer to file pathlist*/

 action; / pointer to file action */

Function

If the string pointed to by name is a file that can be opened with the action
in the string pointed to by action, fopen() returns a pointer to a structure
describing a buffered file. If an error occurs, fopen() returns the value
0 (NULL).

The valid fopen() actions are:

Action: Description:

“r” Open for reading

“w” Open for writing

“a” Append (write) at the end of the file or create file for writing if name
does not exist

“r+” Open for update

“w+” Create for update

“a+” Create or open for update at end of file

“d’ Directory read

Important: An x may be appended to any action(s). This indicates that a
relative pathlist is relative to the current execution directory. The x also
implies that the file should have the execute permission bit set.

Examples

This example creates file for writing in the execution directory.

fp = fopen(“fred”,“wx”);

This example opens existing file for reading.

fp = fopen(“moe”,“r”);

This example creates file for reading and writing.

fp = fopen(“stooge/curly”,“w+”); C

fopen()

The C Standard Library
Chapter 5

5-101

Caveats

Make sure the argument passed as action is a pointer to a string and not a
character; fopen(“fun”,“r”) is correct, fopen(“fun”,’r’) is not.

Opening for a write performs a creat(). If a file with the same name exists
when the file is opened for write, it is truncated to zero length. The file is
created only if the file does not exist.

Append means open for write and position the file pointer to the
end-of-file. This causes the next byte written to be added to the end of the
file. If a read is performed, it returns an end-of-file error. Note that the type
of a file structure is pre-defined in <stdio.h> as FILE, so a user program
may declare or define a file pointer by:

FILE *f;

Three file pointers are available and are considered open the moment the
program runs:

stdin standard input I/O is to path 0
stdout standard output I/O is to path 1
stderr standard error I/O is to path 2

These macros are defined in the header file <stdio.h>.

It is not possible to open a directory for writing with fopen.

See Also

putc() , getc() , creat() , open()

The C Standard Library
Chapter 5

5-102

Formatted Output

Synopsis

#include <stdio.h>

int fprintf(fp, control [,arg0[,arg1...]])

FILE *fp; /* pointer to file */

char *control; /* pointer to control string */

Function

printf() , fprintf() , and sprintf() are standard C library functions that
perform formatted output. Each of these functions converts, formats, and
prints the args (if any) as indicated by the control string.

fprintf() places its output on the file pointed to by fp. See the discussion
of printf() for details on the control string.

fprintf() returns the number of characters output.

Caveats

Use ferror() to check for an output error after calling fprintf().

See Also

printf() , sprintf()

fprint()

The C Standard Library
Chapter 5

5-103

Output a String to a File

Synopsis

#include <stdio.h>

fputs(ptr, fp)

char *ptr; /* pointer to output string */

FILE *fp; /* pointer to file */

Function

fputs() copies the null terminated string pointed to by ptr into the file fp.
The terminating null byte is not copied. –1 is returned if an output
error occurs.

See Also

puts() , gets() , fgets()

fputs()

The C Standard Library
Chapter 5

5-104

Read Data From a File

Synopsis

#include <stdio.h>

int fread(ptr, size, nobj, fp)

char *ptr; /* pointer to copy buffer */

int size, /* data item size */

 nobj; /* number of items to copy */

FILE *fp; /* pointer to file */

Function

fread() reads from the file pointed to by fp. nobj is the number of items to
read. Each item is of size bytes. The bytes read are copied into the memory
pointed to by ptr. fread() returns the number of items read, or zero if an
error occurs.

Example

func()

{

 int value;

 FILE *file;

 fread(&value, sizeof value, 1, file);

}

Caveats

It is the caller’s responsibility to ensure enough space is available at ptr.

See Also

fwrite()

fread()

The C Standard Library
Chapter 5

5-105

Return Memory

Synopsis

free(ptr)

char *ptr; /* pointer to memory to be returned */

Function

free() returns a block of memory granted by malloc() or calloc(). The
memory is returned to a pool of memory for later re-use by malloc() or
free(). The memory freed by malloc() or free() is returned to the system.

Caveats

It is dangerous to use free() with something other than a pointer previously
returned by malloc() or calloc(). To do so hopelessly corrupts the memory
lists maintained by malloc(), rendering them useless and possibly causing
unpredictable program behavior.

See Also

malloc() , calloc()

free()

The C Standard Library
Chapter 5

5-106

Determine Size of Unused Stack Area

Synopsis

int freemem()

Function

freemem() returns the number of bytes allocated for the stack that have not
been used.

If compiler stack checking is enabled, the stack is checked for possible
overflow before a function is entered. The lowest address the stack pointer
has reached is retained so freemem() can report the number of bytes
between the stack limit and the lowest stack value as the unused
stack memory.

Caveats

The program must be compiled with stack checking code in effect for
freemem() to return a correct result. This function is historical; avoid using
it in new code as it is likely to be removed in a future release.

See Also

stacksiz()

freemem()

The C Standard Library
Chapter 5

5-107

Re-Open a File

Synopsis

#include <stdio.h>

FILE *freopen(name, action, fp)

char *name, /* pointer to name of file */

 action; / pointer to action string */

FILE *fp; /* pointer to file */

Function

freopen() is usually used to associate the stdin, stdout, or stderr file
pointers with a file instead of a terminal device.

freopen() substitutes the file name passed as name instead of the
currently open file (if any). The original file is closed with fclose(). The
original file is closed even if the opening of the new file does not succeed.

See fopen() for details on the action values.

freopen() returns the fp passed or zero if the open failed.

See Also

fopen() , fdopen()

freopen()

The C Standard Library
Chapter 5

5-108

Returns Parts of a Floating Point Number

Synopsis

double frexp(value, exp)

double value; /* floating point value */

int *exp; /* exponent */

Function

frexp() breaks a floating point value into a normalized fraction and an
integral exponent of two (exp). This function returns the fraction x, such
that 1/2 <= x < 1 and value = x * 2^exp.

Input String Conversion

Synopsis

#include <stdio.h>

int fscanf(fp, control [,arg ...])

FILE *fp; /* pointer to file */

char *control; /* pointer to control string */

Function

fscanf() performs input conversions from data read from the file pointer
fp. The format of the control string is described in scanf(). fscanf()

returns a count of the number of fields successfully matched and assigned.

See the discussion of scanf() for more details.

See Also

scanf() , sscanf()

frexp()

fscanf()

The C Standard Library
Chapter 5

5-109

Reposition File Pointer

Synopsis

#include <stdio.h>

int fseek(fp, offset, place)

FILE *fp; /* pointer to file */

long offset; /* file position offset (long same as int) */

int place; /* flag to determine offset placement */

Function

fseek() repositions the file pointer for the buffered file pointed to by fp to
a desired character position for the next getc() or putc(). The new position
is at offset bytes from:

 the beginning of the file if place is 0
 the current position in the file if place is 1
 the end of the file if place is 2

fseek() allows for the special problems of buffering. fseek() returns 0 if
a seek is reasonable or –1 if the destination (or place) is
otherwise incorrect.

Caveats

Using lseek() of a buffered file is certain to cause unpredictable results.
fseek() is required when changing from reading to writing or from writing
to reading on files open for update.

See Also

getc() , putc() , lseek()

fseek()

The C Standard Library
Chapter 5

5-110

Report File Pointer Position

Synopsis

#include <stdio.h>

long ftell(fp)

FILE *fp; /* pointer to file */

Function

ftell() is the only proper way to determine the position of the next byte
to be read or written when using buffered I/O. ftell() returns the current
position of the next byte to be read by getc() or written by putc(). The
current position is measured in bytes from the beginning of the file. fp

must be a file pointer.

–1 is returned if fp does not point to an open file.

Caveats

Do not use lseek() to determine file position as it does not allow for any
characters in the buffer.

See Also

getc() , putc() , lseek()

ftell()

The C Standard Library
Chapter 5

5-111

Write Data to a File

Synopsis

#include <stdio.h>

int fwrite(ptr, size, nobj, fp)

char *ptr; /* pointer to buffer to write */

int size, /* size of items */

 nobj; /* number of items to write */

FILE *fp; /* pointer to file */

Function

fwrite() writes to the file pointed to by fp. nobj is the number of items to
be written. Each item is of size bytes. The bytes written are copied from
the memory pointed to by ptr. fwrite() returns the number of items
written, or zero if an error occurs.

Example

func()

{

 int value;

 FILE *file;

 fwrite(&value, sizeofvalue, 1, file);

}

See Also

fread()

fwrite()

The C Standard Library
Chapter 5

5-112

Get Next Character From File, stdin

Synopsis

#include <stdio.h>

int getc(fp)

FILE *fp; /* pointer to file */

int getchar()

Function

getc() returns the next character from the file pointed to by fp. getchar()
is a macro that is equivalent to getc(stdin).

The value returned is an int, not a char. This allows the caller to determine
the difference between a 0xff byte read from the file and the error
condition –1, which is returned when an error or end-of-file occurs.

Under OS-9, there is a choice of low-level service requests to use when
reading from a file:

Choice: Description:

read() Gets characters up to a specified number of bytes in raw mode (that is, no
editing takes place on the input stream and the characters appear to the
program exactly as in the file or on the device).

readln() Honors the various mapping of characters associated with a Serial
Character device such as a terminal, and in any case returns to the caller
as soon as a carriage return is seen.

In the vast majority of cases, it is preferable to use readln() for accessing
Serial Character devices and read() for any other file input. getc() uses
this strategy. As all file input using the Standard Library function is routed
through getc(), so do all other library input functions.

The choice is made when the first call to getc() is made after the file is
opened. The system is consulted for the status of the file and a flag bit is
set in the file structure accordingly.

You can force the choice by setting the relevant bit before a call to getc().
The flag bits are defined in the <stdio.h> header file as _RBF and _SCF.

getc(), getchar()

The C Standard Library
Chapter 5

5-113

Use the following method to set the flag bits. Assuming the file pointer (as
returned by fopen()) is fp, the following forces the use of readln() and
read() on input, respectively:

fp–>_flag |= _SCF;

fp–>_flag |= _RBF;

This trick may be played on the standard stream, stdin, before any input is
requested from the stream.

When you want to input characters one byte at a time without buffering,
use this technique:

fp–>_flag |= _UNBUF;

This causes data to be read from or written to the file one byte at a time.

If a file is open for update (fopen() action r+ or w+), the program is
required to do a fseek() before changing from getc() to putc() or putc() to
getc(), even if no effective file position change occurs. This causes the
buffer to flush (or fill) so input or output can proceed in the
opposite direction.

The stdout buffer is flushed automatically by getc(stdin) before the actual
read is performed. This ensures that prompts to a terminal are output
before the read is issued.

Caveats

It is not a good idea to call read() or write() on a path that is buffered
because the buffered data and the low-level I/O may not occur in the
correct order.

Important: Due to the buffering, RBF record-locking is ineffective. If an
application requires the record-locking facilities, low-level I/O calls and
program buffering is required.

See Also

fopen() , putc()

The C Standard Library
Chapter 5

5-114

Value for Environment Name

Synopsis

char *getenv(name)

char *name; /* pointer to environment name string */

Function

getenv() searches the environment list for a string in the form of name =
value. It returns a pointer to the string value if such a string is present,
otherwise getenv() returns the value 0 (NULL).

An array of strings called the environment is made available by os9exec()
when a process is created. The environment list is usually maintained by
the shell. The shell setenv and unsetenv commands can alter the strings.
The names of the environment variables and their contents are defined by
the application using them.

Important: A process inherits the environment only if the process was
created with os9exec(). The os9fork() and chain() functions themselves do
not pass the correct information for the argument and environment lists. Do
not modify the strings returned by getenv().

See Also

os9exec() , os9fork() , chain()

getenv()

The C Standard Library
Chapter 5

5-115

Get System Time

Synopsis

#include <time.h>

getime(timebuf)

struct sgtbuf *timebuf; /* ptr to buffer for returned system time */

Function

getime() returns the system time into the time buffer pointed to by
timebuf. The time units are defined in the <time.h> header file.

See Also

setime()

Determine Process ID Number

Synopsis

int getpid()

Function

getpid() returns the system process ID number for the calling process.
You can use this number for such things as creating unique file names.

See Also

F$ID in the OS-9 Technical Manual.

getime()

getpid()

The C Standard Library
Chapter 5

5-116

Get a String from a File

Synopsis

#include <stdio.h>

char *gets(ptr)

char *ptr; /* pointer to buffer to hold string */

Function

gets() reads characters from the stdin file and places them in the buffer
pointed to by ptr. The function fills the buffer until a carriage return (\n) is
read. The \n is replaced by a null byte. gets() returns its argument.

Caveats

Because no maximum byte count is available for gets(), it is the caller’s
responsibility to reserve enough bytes at ptr for the string.

See Also

fgets()

gets()

The C Standard Library
Chapter 5

5-117

Get File Status

Synopsis

#include <sgstat.h>

getstat(code, path, buffer)

int code, /* code = 0 */

 path; /* path number of open file */

char *buffer; /* pointer to buffer for path options */

getstat(code,path)

int code, /* code = 1 or 6 */

 path; /* path number of open file */

getstat(code,path,size)

int code, /* code = 2 */

 path; /* path number of open file */

long *size; /* pointer to current file size */

getstat(code,path,pos)

int code, /* code = 5 */

 path; /* path number of open file */

long *pos; /* pointer to current file position */

Function

getstat() is historical from the 6809 C Compiler and is used to access a
few I$GetStt system functions. path must be the path number of an
open file.

code is defined as follows:

Code: Description:

0 buffer is the address of the 128 byte buffer into which the path option
bytes are copied. The <sgstat.h> header file contains a struct defined for
use by the program.

1 This applies only to SCF devices and is used to test for data ready. The
return value is the number of bytes available or –1 if an error occurred.

2 size is the address of the long integer into which the current file size is
placed. The function returns –1 on error and zero on success.

5 pos is the address of the long integer into which the current file position is
placed. The function returns –1 on error and zero on success.

6 The function returns –1 on either EOF or error and 0 if not at EOF.

getstat()

The C Standard Library
Chapter 5

5-118

When getstat() returns with the value –1, the appropriate error code is
placed in the global variable errno.

Caveats

This function is supported for the convenience of programs ported from the
6809. See the special getstat functions (all of which begin with _gs) for the
same information supplied in a more palatable format.

See Also

setstat() and all the _gs functions (see index)

Determine User ID Number

Synopsis

int getuid()

Function

getuid() returns the group/user ID of the current process. The upper word
(two bytes) of the value is the group number, the lower word is the
user number.

See Also

F$ID in the OS-9 Technical Manual.

getuid()

The C Standard Library
Chapter 5

5-119

Read a Word From a File

Synopsis

#include <stdio.h>

int getw(fp)

FILE *fp; /* pointer to file */

Function

getw() returns an integer from the file pointed to by fp. getw() returns –1
on error. Therefore, use the macros feof() and ferror() to check the success
of getw().

Caveats

getw() is a machine-dependent function because the size of a word varies
from machine to machine. getw() assumes no particular alignment in the
file. getw() reads two bytes from the file and sign-extends them to
four bytes.

getw()

The C Standard Library
Chapter 5

5-120

Convert Calendar Time to Greenwich Mean Time

Synopsis

#include <time.h>

struct *gmtime(tp)

time_t *tp; /* pointer to Calendar Time structure */

Function

gmtime() converts the Calendar Time contained in the time structure
pointed to by tp to Greenwich Mean Time (GMT).

Caveats

gmtime() returns a pointer to a static area which may be overwritten. To
ensure data integrity, use the string or save it immediately.

See Also

mktime() (for more information on the time structure tp); time().

Euclidean Distance Function

Synopsis

#include <math.h>

double hypot(x, y)

double x, y;

Function

hypot() returns the Euclidean distance function:

sqrt(x * x + y * y)

Precautions are taken to avoid unwarranted overflows.

gmtime()

hypot()

The C Standard Library
Chapter 5

5-121

Request Internal mMemory

Synopsis

char *ibrk(size)

unsigned size; /* size of memory block */

Function

ibrk() returns a pointer to a block of memory of size bytes. The returned
pointer is aligned to a word boundary. The memory from which ibrk()
grants requests is the area between the end of the data allocation and
the stack:

Higher Address:

Program
Data Area

Stack Area

ibrk Area

Lowest Address:

Stack Pointer

Stack Limit
changes as ibrk
Area grows

Grows toward

Grows toward
ibrk Area

Stack

If the requested size would cause the ibrk area to cross the stack pointer,
the request fails. You can use freemem() to determine the amount of stack
remaining which is also the remaining ibrk area.

ibrk() is useful to obtain memory from a fixed amount of memory, unlike
ebrk() whose available memory is that of the entire system. The C I/O
library functions request the first 2K of I/O buffers from this area, the
remainder from ebrk().

Caveats

Be very careful not to crowd out the stack with ibrk() calls. When stack
checking is in effect, the program aborts with a ***Stack Overflow***

message if insufficient stack area exists to call a function.

See Also

sbrk() , ebrk() , freemem() , stacksize()

ibrk()

The C Standard Library
Chapter 5

5-122

Search for Character in String

Synopsis

char *index(ptr,ch)

char *ptr, /* pointer to string */

 ch; /* search character */

Function

index() returns a pointer to the first occurrence of the character ch in the
string pointed to by ptr. If the character is not found, the function returns
a NULL (0).

Caveats

This example looks for a period (.) in string and sets ptr to point to it. Note
that ch is a character, not a pointer to a character:

func()

{

char *ptr,*string;

if((ptr = index(string,’.’))

process(ptr);

else printf(“No ’.’ found!\n”);

}

See Also

rindex()

index()

The C Standard Library
Chapter 5

5-123

Set up Process Signal Handler

Synopsis

int intercept(icpthand)

int (*icpthand)(); /* this is how a function declares that */

/* an argument is a pointer to a function */

/* returning an int */

Function

intercept() instructs OS-9 to pass control to the function whose address
is pointed to by icpthand when a signal is received by the process.

If the signal handler function declares an int argument, the function has
access to the number of the signal received. On return from the signal
handler function, the process resumes at the point in the program where it
was interrupted by the signal.

If icpthand is zero, the signal handler is removed.

Caveats

A program will not receive an abort or quit signal from the keyboard
(usually ^C and ^E) unless the program performs output to the terminal.
This is because OS-9 sends the abort/quit signals to the last process to do
I/O to the terminal. If you run the program from the shell and type ^E
before the program performs I/O to the terminal, the shell receives the
signal and kills the running program. If a program requires control of the
terminal immediately, do some I/O to one of the standard paths such as
printing a program banner or getting the terminal options with _gs_opt().

Any I/O using the OS-9 C library (for example, printf) cannot be
performed inside both the intercept handler function and the main program.
Consequently, avoid I/O within intercept functions.

If a math coprocessor (for example, 68881) is present on the system, no
floating point math can be used within the intercept handler function.

See Also

F$Icpt , F$Kill , F$SigMask in the OS-9 Technical Manual.

intercept()

The C Standard Library
Chapter 5

5-124

Example

As an example, suppose that a program wants to clean up work files and
exit when a keyboard quit signal (signal 3 which, normally, can be caused
by typing ^E on the terminal):

#include <stdio.h>

#define until(expr) while(!(expr))

char *tempname = “tempfile”;

FILE *tempfp;

int quittime = 0;

/* the signal handler */

gotsignl(signum)

int signum;

{

 switch(signum) {

 case 3: /* the quit signal */

 quittime = 1;

 break;

 default: /* ignore all others */

 break;

 }

}

main()

{

 if((tempfp = fopen(tempname,“w”) == NULL)

 exit(_errmsg(errno,“can’t open file – %s\n”,tempname));

 intercept(gotsignl);

 do {

 do_work();

 } until(quittime);

 fclose(tempfp);

 unlink(tempname);

 exit(_errmsg(1,“quittin’ time!!!\n”));

}

The C Standard Library
Chapter 5

5-125

See If Argument is Alphanumeric

Synopsis

#include <ctype.h>

int isalnum(c)
char c;

Function

isalnum() returns a non-zero value if its argument is a digit or an
alphabetic character. Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

See If Argument is Alphabetic

Synopsis

#include <ctype.h>

int isalpha(c)
char c;

Function

isalpha() returns a non-zero value if its argument is an alphabetic
character. Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isalnum()

isalpha()

The C Standard Library
Chapter 5

5-126

See If Argument is ASCII

Synopsis

#include <ctype.h>

int isascii(c)

char c;

Function

isascii() returns a non-zero value if its argument is an ASCII character
(that is, the value is less than 128). Otherwise, it returns zero.

See Also

isalnum() , isalpha() , iscntrl() , isdigit() , islower() , isprint() ,
ispunct() , isspace() , isupper() , isxdigit()

See If Argument is a Control Code

Synopsis

#include <ctype.h>

int iscntrl(c)

char c;

Function

iscntrl() returns a non-zero value if its argument is a control code
(values 0 through 31 and 127). Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isascii()

iscntrl()

The C Standard Library
Chapter 5

5-127

See If Argument is a Digit

Synopsis

#include <ctype.h>

int isdigit(c)
char c;

Function

isdigit() returns a non-zero value if its argument is a digit. Otherwise, it
returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

See If Argument is Lower Case

Synopsis

#include <ctype.h>

int islower(c)
char c;

Function

islower() returns a non-zero value if its argument is a lower case letter.
Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isdigit()

islower()

The C Standard Library
Chapter 5

5-128

See If Argument is a Printable Character

Synopsis

#include <ctype.h>

int isprint(c)
char c;

Function

isprint() returns a non-zero value if its argument is a printable character
(values 32 through 126). Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

See If Argument is a Punctuation Character

Synopsis

#include <ctype.h>

int ispunct(c)
char c;

Function

ispunct() returns a non-zero value if its argument is a punctuation
character (neither control nor alphanumeric). Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isprint()

ispunct()

The C Standard Library
Chapter 5

5-129

See If Argument is White Space

Synopsis

#include <ctype.h>

int isspace(c)

char c;

Function

isspace() returns a non-zero value if its argument is one of the white
space characters (space, tab, linefeed, return or formfeed). Otherwise, it
returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See If Argument is Upper Case

Synopsis

#include <ctype.h>

int isupper(c)

char c;

Function

isupper() returns a non-zero value if its argument is an upper case letter.
Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isspace()

isupper()

The C Standard Library
Chapter 5

5-130

See If Argument is a Hex Character

Synopsis

#include <ctype.h>

int isxdigit(c)

char c;

Function

isxdigit() returns a non-zero value if its argument is a hexadecimal digit
(0-9, A-F, or a-f). Otherwise, it returns zero.

Caveats

The domain of this macro is defined only for c = –1 (EOF) and the values
of c that cause isascii() to return a non-zero value.

See Also

isascii()

isxdigit()

The C Standard Library
Chapter 5

5-131

Send a Signal to a Process

Synopsis

#include <signal.h>

int kill(pid, sigcode)

int pid; /* process ID */

short sigcode; /* signal code to send */

Function

kill() sends a signal to a process. Both the sending and receiving process
must have the same user number unless the sending process’s user number
is that of the super user (0).

The value in sigcode is sent as a signal to the process whose ID number is
pid. You can give any value in sigcode. The conventional code numbers
are defined in the <signal.h> header file.

kill() returns –1 if an error occurs and the appropriate error code is
placed in the global variable errno.

Caveats

The super user can send a signal to all processes running on the system if
the pid is zero.

See Also

F$Send in the OS-9 Technical Manual; the kill command in Using
Professional OS-9.

kill

The C Standard Library
Chapter 5

5-132

Multiply Float By Exponent of 2

Synopsis

double ldexp(fp, exp)

double fp; /* floating point value */

int exp; /* exponent */

Function

ldexp() multiplies a floating point value by an integral power of two. This
function returns the value equal to fp * 2^exp.

Convert Calendar Time to Local Time

Synopsis

#include <time.h>

struct tm *localtime(tp)

time_t *tp; /* pointer to Calendar Time structure */

Function

localtime() converts the Calendar Time contained in the time structure
pointed to by tp to Local Time.

Caveats

localtime() returns a pointer to a static area which may be overwritten.
To ensure data integrity, use the string or save it immediately.

See Also

mktime() (for more information on the time structure tp); time() .

Idexp()

localtime()

The C Standard Library
Chapter 5

5-133

Natural Logarithm

Synopsis

#include <math.h>

double log(x)

double x;

Function

log() returns the natural logarithm of x. The value of x must be positive.

Common Logarithm

Synopsis

#include <math.h>

 double log10(x)

 double x;

Function

log10() returns the common logarithm of x. The value of x must
be positive.

log()

log10()

The C Standard Library
Chapter 5

5-134

Non-Local Goto

Synopsis

#include <setjmp.h>

int longjmp(env,val)
jmp_buf env; /* program environment buffer */
int val; /* error status value */

Function

setjmp() and longjmp() allow returning program control directly to a
higher level function. They are most useful when dealing with errors and
signals encountered in a low-level routine.

The goto statement in C is limited in scope to the function in which it
appears (that is, the destination of the goto must be in the same function).
Control can only be transferred elsewhere by means of the function call,
which returns to the caller. In certain abnormal situations it is preferable to
start some section of the code again. But this means returning up a ladder
of function calls with error indications all the way.

setjmp() marks a point in the program where a subsequent longjmp() can
reach. setjmp() places enough information in the buffer passed in env (as
defined in <setjmp.h>) for longjmp() to restore the environment to that
existing at the associated call to setjmp().

longjmp() is called with the environment buffer as an argument. The
caller of longjmp() can use a value val as, perhaps, an error
status indicator.

To set up the setjmp() facility, a function calls setjmp() to initialize the
buffer, and if the value returned by setjmp() is zero, the program knows
that the call was the first time through. If the returned value was
non-zero, it was a longjmp() returning from some deeper level of
the program.

After longjmp() is completed, program execution continues as if the
corresponding setjmp() call had just returned the value val. It is imperative
that the function calling setjmp() does not return before the call
to longjmp().

longjmp() cannot cause setjmp() to return the value zero as that value is
returned by the call to setjmp() itself. If longjmp() is invoked with a val of
zero, setjmp() returns 1. All automatic variables have values as of the time
longjmp() was called.

longjmp()

The C Standard Library
Chapter 5

5-135

Caveats

If longjmp() is called before env is initialized by setjmp(), or if the
function calling setjmp() has already returned, absolute chaos
is guaranteed.

See Also

setjmp()

Position File Pointer

Synopsis

long lseek(path, position, place)
int path; /* open path number of file */
long position; /* new file position offset */
int place; /* flag to determine offset placement */

Function

lseek() repositions the file pointer for the file open on path, to the byte
offset given in position. place determines from which file position the
offset is based:

0 from the beginning of the file
1 from the current position
2 from the end of the file

Seeking to a location beyond end-of-file for a file open for writing and
then writing to it creates a hole in the file. The hole contains data with no
particular value, usually garbage remaining on the disk.

The value returned is the resulting position in the file. If there is an error,
–1 is returned and the appropriate error code is placed in the global
variable errno.

Caveats

On OS-9 the file pointer is a full unsigned 32-bits. UNIX file addresses are
limited to 31 bits, and an error is returned if the resulting file pointer
is negative.

Do not use lseek() on a buffered file since the buffering routines keep track
of the file pointer via fseek().

See Also

fseek() ; I$Seek in the OS-9 Technical Manual.

lseek()

The C Standard Library
Chapter 5

5-136

Create a Directory

Synopsis

#include <modes.h>

makdir(name, mode, perm [,size])

char *name; /* pointer to name of directory */

short mode, /* file access mode */

 perm; /* file attribute permissions */

[int size;] /* initial size of directory */

Function

makdir() is used to create a directory file. The pointer name gives the
name of the directory. The desired path access mode is given by mode.
perm is the disk file attribute permissions for the directory. The initial size
of the directory is set to size if the S_ISIZE bit is set in mode.

See Also

I$MakDir in the OS-9 Technical Manual.

makdir()

The C Standard Library
Chapter 5

5-137

Create a Module

Synopsis

#include <memory.h>

#include <module.h>

mod_exec *make_module(name, size, attr, perm, typlang, color)

char *name; /* ptr to name of module */

int size; /* size of module body */

short attr, /* attributes/revision of module */

 perm, /* module permissions */

 typlang; /* type/language of module */

int color; /* memory type in which to make module */

Function

make_module() creates a memory module with the specified name and
attributes in the specified memory. make_module() is identical to
_mkdata_module() except that make_module() allows you to specify the
type/language of the module and color of memory in which to make the
module. mod_exec is defined in <module.h>.

size specifies the desired memory size of the module in bytes. The size
value does not include the module header and CRC bytes. size is the
amount of memory available for actual use. The memory in the module is
initially cleared to zeroes.

attr is the attribute/revision word, perm is the access permission word,
and typlang specifies the type/language of the module.

color indicates the specific type of memory in which to load the module.
The file memory.h contains definitions of the three types of memory that
you can specify:

Type: Definition:

SYSRAM System RAM memory

VIDEO1 Video memory for plane A

VIDEO2 Video memory for plane B

make_module()

The C Standard Library
Chapter 5

5-138

If color is zero, no memory type is specified. Consequently, the module is
made in whatever memory the system allocates.

make_module() returns a pointer to the beginning of the module header. If
the module cannot be created, a value of –1 is returned and the appropriate
error code is placed in the global variable errno.

Caveat

The name of the module created by make_module() always begins at offset
$34 within the module. This implies that program modules, trap handlers,
file managers, device drivers, and device descriptors cannot be made
conveniently by this call.

See Also

_mkdata_module C function; F$DatMod service request in the OS-9
Technical Manual.

The C Standard Library
Chapter 5

5-139

Allocate Memory From an Area

Synopsis

char *malloc(size)

unsigned size; /* size of memory block to allocate */

Function

malloc() returns a pointer to a block of memory of size bytes. The pointer
is suitably aligned for storing any type of data.

malloc() maintains an amount of memory called an arena from which it
grants memory requests. malloc() searches its arena for a block of free
memory large enough for the request and, in the process, unites adjacent
blocks of free space returned by the free() function. If insufficient memory
is available in the arena, malloc() calls ebrk() to get more memory from
the system.

malloc() returns NULL (0) if there is no available memory or if it detects
that the arena is corrupted by storing outside the bounds of an
assigned block.

Caveats

Use extreme care to ensure that only the memory assigned by malloc() is
accessed. Modifying addresses immediately above or below the assigned
memory or passing free(), a value not assigned by malloc(), causes
unpredictable program results.

See Also

free() , ebrk() , ibrk() , sbrk()

malloc()

The C Standard Library
Chapter 5

5-140

Memory Search

Synopsis

#include <strings.h>

char memchr(s, val, size)

char *s; /* pointer to memory to search */

int val; /* search value */

unsigned size; /* size of memory to search */

Function

memchr() searches a region of memory pointed to by s for the value val.
size specifies the size of the region searched. Each byte of the region is
compared by forcing val to an unsigned char and comparing the current
byte. The search continues until a match is found or the region is
exhausted. If a match is found, a pointer to the matching byte is returned. If
no match is found, NULL is returned.

Compare Memory

Synopsis

#include <strings.h>

memcmp(s1, s2, size)

char *s1, /* pointer to memory to compare */

 s2; / pointer to memory to compare */

unsigned size; /* size of memory to compare */

Function

memcmp() makes a byte by byte comparison of two regions of memory
pointed to by s1 and s2. size specifies the size of each region. memcmp()
returns the value of zero if there are no differing bytes. The returned value
is positive if the value of the byte in the region pointed to by s1 is greater
than the corresponding byte in the region pointed to by s2. The returned
value is negative if the reverse is true.

memchr()

memcmp()

The C Standard Library
Chapter 5

5-141

Copy Memory

Synopsis

#include <strings.h>

memcpy(dest, src, size)

char *dest, /* pointer to destination memory */

 src; / pointer to memory to copy */

unsigned size; /* size of memory to copy */

Function

memcpy() copies a specific number of bytes from the region beginning at
the location pointed to by src to the region beginning at the location
pointed to by dest. size specifies the number of bytes copied. Regions
may overlap with no ill effects.

Move Memory

Synopsis

#include <strings.h>

memmove(dest, src, size)

char *dest, /* pointer to destination memory */

 src; / pointer to memory to copy */

unsigned size; /* size of memory to copy */

Function

memmove() copies a specific number of bytes from the region specified by
src to the region specified by dest. The number of bytes copied is specified
by size. Regions may overlap with no ill effects.

memcpy

memmove()

The C Standard Library
Chapter 5

5-142

Fill Memory

Synopsis

#include <strings.h>

memset(s, val, size)
void *s; /* pointer to memory to fill */
int val; /* value with which to fill memory */
unsigned size; /* size of memory to fill with val */

Function

memset() fills the region of memory pointed to by s with the value
specified by val. size specifies the size of the memory region. Each byte of
the region is filled by forcing val to an unsigned char.

Create a Directory

Synopsis

#include <modes.h>

mknod(name,perm)
char *name; /* pointer to name of directory */
short perm; /* file attributes to set */

Function

mknod() creates a directory file. The pointer name gives the name of the
directory, and perm gives the desired access permissions of the directory.

mknod() returns zero if the directory was successfully created. If the
creation failed, –1 is returned and the appropriate error code is placed in
the global variable errno.

Caveats

mknod() does not make UNIX-style special files as there is no such thing
on OS-9. This is a historical function and is likely to be removed in a
future release. Use makdir() in all new code.

See Also

makdir() ; I$MakDir in the OS-9 Technical Manual.

memset()

mknod()

The C Standard Library
Chapter 5

5-143

Create a Unique File Name

Synopsis

char *mktemp(name)

char *name; /* pointer to name of file */

Function

You can use mktemp() to ensure that the name of a temporary file is unique
in the system and does not clash with any other file name.

A pointer to a template name is passed to the function. The template string
should look like a filename with six trailing X’s. mktemp() replaces the X’s
with a letter and the current process ID. The letter is chosen so that the
resulting name will not conflict with an existing file.

mktemp() returns a pointer to the template or NULL if more than 26
mktemp() files exist.

Converts Broken-Down Time to Calendar Time

Synopsis

#include <time.h>

time_t mktime(tp)

struct tm *tp; /* pointer to Broken Down Time structure */

mktemp()

mktime()

The C Standard Library
Chapter 5

5-144

Function

mktime() converts the Local Time values in the Broken-Down Time
structure pointed to by tp into a Calendar Time value. Broken-Down Time
has the following format:

struct tm {
 int tm_sec; /* seconds after the minute: [0,59] */
 int tm_min; /* minutes after the hour: [0,59] */
 int tm_hour; /* hours after midnight: [0,23] */
 int tm_mday; /* day of the month: [1,31] */
 int tm_mon; /* months after January: [0,11] */
 int tm_year; /* years after 1900 */
 int tm_wday; /* days after Sunday: [0,6] */
 int tm_yday; /* days after January 1: [0,365] */
 int tm_isdst; /* Daylight Savings Time (DST) flag */
 /* 0 = no, 1 = yes, –1 = unknown */
};

mktime() ignores the input values of tm_wday and tm_yday. It does not
require the other fields of tm to be in the ranges specified above, but
instead normalizes the fields and sets tm_wday, tm_yday, and tm_isdst.
This allows you to easily do temporal arithmetic without having to worry
about mixed-base operations.

Example

The following code fragment will correctly iterate over a 24-hour interval
no matter where it starts relative to the beginning of the day, month, or
year (presuming the range of representable times is not exceeded):

struct tm when;
int i;

for (i = 0; i < 24; i++) {
 when.tm_hour++;
 mktime(&when);
}

Caveat

Returning –1 to indicate an error implies there is a (somewhat obscure) one
second interval that appears to be non-representable. The encoding of
times for time_t only represents times ranging from 1902 to
2038 (approximately).

See Also

getenv() , sysdate() , julian()

The C Standard Library
Chapter 5

5-145

Load Module into Colored Memory

Synopsis

#include <memory.h>

#include <module.h>

mod_exec *modcload(modname, mode, memtype)

char *modname; /* path to module */

int mode, /* access mode with which to open the file */

 memtype; /* type code of specific memory type */

Function

modcload() searches the module directory for a module with the same
name as that pointed to by modname and links to it. If the module is not in
the module directory, modname is considered a pathlist and all modules in
the specified file are loaded. A link is made to the first module loaded from
the file and a pointer to it is returned.

mode is the mode which opens the file to load. If any access mode is
acceptable, zero can be specified for mode.

memtype indicates the specific type of memory in which to load the
module. The file memory.h contains definitions of the three types of
memory that may be specified:

Type: Definition:

SYSRAM System RAM memory

VIDEO1 Video memory for plane A

VIDEO2 Video memory for plane B

If memtype is zero, no memory type is specified. Consequently, the
module may be loaded in whatever memory the system allocates.

If the load is successful, modcload() returns a pointer to the module. If the
load fails, –1 is returned and the appropriate error code is placed in the
global variable errno.

modcload()

The C Standard Library
Chapter 5

5-146

Return Parts of a Real Number

Synopsis

#include <math.h>

double modf(value, iptr)

double value, /* real number */

 iptr; / pointer to integer part of value */

Function

modf() returns the signed fractional part of value and stores the integral
part in the double pointed to by iptr.

Link to a Memory Module

Synopsis

#include <module.h>

mod_exec *modlink(modname, typelang)

char *modname; /* pointer to name of module */

short typelang; /* type/language value of module */

Function

modlink() searches the module directory for a module with the same name
as that pointed to by modname and links to it, provided that typelang
matches the respective value of Type/Language in the module. If the
module is found, the link count for the module is incremented by one. If
any module type or language is desired, specify zero.

The header file <module.h> contains a structure appropriate for accessing
the elements of system-defined memory modules.

If the link is successful, modlink returns a pointer to the module. If the link
fails, –1 is returned and the appropriate error code is placed in the global
variable errno.

See Also

modload() ; F$Link in the OS-9 Technical Manual.

modf()

modlink()

The C Standard Library
Chapter 5

5-147

Load and Link to a Memory Module

Synopsis

#include <module.h>

mod_exec *modload(modname, accessmode)

char *modname; /* pointer to module name */

short accessmode; /* access mode for module */

Function

modload() loads all modules in the file specified by the path modname.

A link is made to the first module loaded from the file and a pointer to it is
returned. If any module accessmode is acceptable, specify zero
for accessmode.

The <module.h> header file contains a structure appropriate for accessing
the elements of system-defined memory modules.

If the load is successful, modload() returns a pointer to the module. If the
load fails, –1 is returned and the appropriate error code is placed in the
global variable errno.

To load a module via the shell path variable list, see modloadp().

See Also

modlink() ; F$Load in the OS-9 Technical Manual.

modload()

The C Standard Library
Chapter 5

5-148

Load and Link to a Memory Module Using PATH

Synopsis

#include <module.h>

mod_exec *modloadp(modname, accessmode, namebuffer)
char *modname; /* pointer to module name */
short accessmode; /* access mode for module */
char *namebuffer; /* pointer to pathlist of loaded module */

Function

modloadp() is similar to modload() with one exception: the PATH
environment variable determines alternate directories to search for the
named module. The search procedure in pseudo-code is as follows:

if (modload(name, perm) != SUCCESS) {
 if (errno == E_PNNF && PATH is found in the environment) {
 do {
 get next directory from PATH;
 if (modload(path+name) == SUCCESS) {
 return modptr;
 } else if (errno != E_PNNF) return FAILURE;
 } while (more path elements && !found);
 return FAILURE;
 } return FAILURE;
} else return modptr;

PATH can contain a list of directories to search if the program is not found
in the module directory or the execution directory. PATH is set to any
number of directory pathlists separated by colons:

/h0/cmds:/d0/cmds:/n0/droid/h0/special_stuff/cmds

namebuffer is a pointer to an array that contains the pathlist of the
successfully loaded module. A null string is returned if the load fails to
find the file. Any errors other than E_PNNF leave the path string used for
the load attempt intact. namebuffer can be NULL, if access to the path
string is not required.

modloadp() returns a pointer to the module if the load is successful. If the
load is unsuccessful, –1 if returned and the appropriate error code is placed
in errno.

os9exec() uses modloadp() to locate the executable file if the fork or
chain attempt fails. The action is the same as the shell utility handling of
the PATH environment variable.

See Also

modload() , os9exec() ; shell in Using Professional OS-9.

modloadp()

The C Standard Library
Chapter 5

5-149

Unlink From a Module

Synopsis

#include <module.h>

munlink(module)

mod_exec *module; /* pointer to module */

Function

munlink() informs the system that the module pointed to by module is no
longer required by the process. The module’s link count is decremented,
and the module is removed from memory if the link count reaches zero.
module must have been a pointer returned by modload() or modlink().

munlink() returns –1 on error. The appropriate error code is placed in the
global variable errno.

See Also

modlink() , modload() ; F$Unlink in the OS-9 Technical Manual.

munlink()

The C Standard Library
Chapter 5

5-150

Unload a Module

Synopsis

#include <module.h>

int munload(name, type)

char *name; /* pointer to name of module */

short typelang; /* module type/language */

Function

munload() informs the system that the module whose name is pointed to
by name with a type/language of typelang is no longer required by the
process. The module’s link count is decremented and is removed from
memory when the link count reaches zero. A typelang of zero means
any type.

munload() returns –1 on error. The appropriate error code is placed in the
global variable errno.

Caveats

This function differs from munlink() in that it unlinks by module name
rather than module pointer. Attempting to unlink a module by performing a
link to a module by name to determine its address, then unlinking it twice,
does not work because the first unlink removes the module from the
process’s address space.

See Also

munlink() , modlink() , modload() ; F$UnLoad in the OS-9
Technical Manual.

munload()

The C Standard Library
Chapter 5

5-151

Open a File

Synopsis

#include <modes.h>

int open(name, mode)

char *name; /* pointer to name of file */

short mode; /* file access mode */

Function

open() opens an existing file with the specified name. Specify the access
mode you want in mode. The values for mode are defined in the header
file <modes.h>.

open() returns a path number identifying the file when I/O is performed. If
the open fails, –1 is returned and the appropriate error code is placed in the
global variable errno.

Reads and writes to the file start at the beginning of the file. You can move
the file pointer at any time with the lseek() function.

See Also

creat() , create() , read() , write() , dup() , close() ; I$Open in the
OS-9 Technical Manual.

open()

The C Standard Library
Chapter 5

5-152

Open the Directory

Synopsis

#include <dir.h>

DIR *opendir (filename)

char *filename /* pointer to directory name */

Function

opendir() opens the specified directory and associates a directory stream
with it. opendir() returns a pointer identifying the directory stream in
subsequent operations. The pointer NULL is returned if filename cannot be
accessed or if it cannot malloc enough memory to hold the entire
file descriptor.

See Also

closedir() , readdir() , rewinddir() , seekdir() , telldir()

opendir()

The C Standard Library
Chapter 5

5-153

OS-9 System Call Processing

Synopsis

os9exec(procfunc, modname, argv, envp, stacksize, priority, pathcnt)

int (*procfunc)(); /* ptr to function to create new process */

char *modname, /* pointer to module name */

 **argv, /* pointer to argument pointer list */

 **envp; /* pointer to environment pointer list */

unsigned stacksize; /* additional memory to allocate in bytes */

short priority, /* priority to run process */

 pathcnt; /* # of initial open paths for new process */

Function

os9exec() is a high-level fork/chain interface that prepares the argument
and environment list before a process is created. The F$Fork system call
passes information to a new process as binary data specified by a pointer
and size. It is up to the forked process to interpret the data.

os9fork() and chain() are C-level hooks to the system calls. By
themselves, they provide no real argument information. This leaves the
interpretation of a raw argument string up to the cstart portion of the C
program. Problems can occur when handling quotes and control characters.

os9exec() provides more precise control over the argument strings and
supplies the environment variables inherited from the parent process.
os9exec() closely simulates the UNIX execve() system call.

procfunc is a pointer to a function that creates a new process. This
function is normally os9fork, chain(), os9forkc, or chainc().

modname is a pointer to a string naming the new primary module.

argv is the argument pointer list that the new process receives. By
convention, argv[0] is the name of the new module and the end of the argv
list is marked by a NULL pointer.

envp is the environment pointer list that the new process receives. It points
to environment variables and the end of the envp list is also marked by a
NULL pointer.

stacksize is the additional memory (in bytes) to allocate to the new
process’s stack memory. A value of zero indicates the default stack size the
process requires.

os9exec()

The C Standard Library
Chapter 5

5-154

priority is the priority value at which the new process runs. If the value
is zero, the new process is given the priority of the calling process.

pathcnt is given only if the procfunc value indicates os9forkc() or
chainc(). This value is the number of open paths to pass to the new
process. Normally, you specify three for this argument, causing the three
standard paths to be passed. A value of zero passes no open paths.

If procfunc indicates os9forkc() or os9fork, and the initial attempt to create
the child process fails due to E_PNNF (path name not found), os9exec()
calls modloadp() with modname to load the module from disk and then
attempts the fork again. This action is the same as the shell handling of
executable files.

Important: If using os9exec() when procfunc indicates chain() or
chainc(), you must provide a full pathlist for the module.

os9exec() returns the value of (*procfunc)(). This is the ID of the child
process (for os9fork()). –1 is returned on error.

Important: Any program that executes a system command should use the
os9exec() interface. The cstart module can handle parameter strings passed
by os9fork() and chain(), but no environment is available and the argv
pointer list is separated by white space.

Example

The following code fragment is an example call to os9exec(). The argblk
array contains pointers to the arguments in the order that the new program
is to receive them. The new process receives a copy of the arguments, not
the addresses of the arguments. This example passes the current
environment by naming the global variable environ.

extern int os9forkc();
extern char **environ;

char *argblk[] = {
“rename”,
“–x”,
“oldname”,
“newname”,
0,

};

main ()
{

 if ((pid = os9exec(os9forkc,argblk[0],argblk,
 environ,0,0,3)) > 0) wait(0);
else printf (“can’t fork %s”,argblk[0]);

}

The C Standard Library
Chapter 5

5-155

Create a Process

Synopsis

os9fork(modname, parmsize, parmptr, type, lang, datasize, prior)

char *modname, /* pointer to module name */

 parmptr; / pointer to parameter list */

int parmsize, /* size of parameter list */

 datasize; /* additional memory for process in bytes */

short type, /* type of module */

 lang, /* module language */

 prior; /* initial priority of process */

os9forkc(modname, parmsize, parmptr, type, lang, datasize, prior,

 pathcnt)

char *modname, /* pointer to module name */

 parmptr; / pointer to parameter list */

int parmsize, /* size of parameter list */

 datasize; /* additional memory for process in bytes */

short type, /* type of module */

 lang, /* module language */

 prior, /* initial priority of process */

 pathcnt; /* # of initial open paths for new process */

Function

os9fork() creates a process that runs concurrently with the calling
process. When the new process terminates, its exit status is available to the
forking (parent) process. The new process inherits the standard paths (path
numbers 0, 1, and 2).

modname is a pointer to a null-terminated module name. The argument
parmptr is a pointer to a null-terminated string to be passed to the new
process; parmsize should be set equal to strlen(parmptr)+1. type and lang
specify the desired type and language of the module; these can be given as
zero to indicate any type or language. datasize gives extra memory to the
new program. If no extra memory is required, this value can be zero. prior

is the new priority at which to run the program; indicate zero if no priority
change is desired.

If the fork is unsuccessful, os9fork() returns –1 and the appropriate error
code is placed in the global variable errno. If the fork is successful, the
process ID number of the new process is returned.

os9fork(), os9forkc()

The C Standard Library
Chapter 5

5-156

os9forkc() is the same as os9fork() with a pathcnt argument. pathcnt is
the number of open paths for the new process to inherit.

os9exec() is the preferred method to fork C programs. See the discussion
of os9exec() for more details.

Caveats

Beware of forking to a system module. It only makes sense to fork to a
program of type object module. This is an historical function and is likely
to be removed in a future release. Use os9forkc() instead.

See Also

chain() , os9exec() ; F$Chain , F$Fork in the OS-9 Technical Manual.

Wait for Signal

Synopsis

pause()

Function

pause() may be used to suspend a task until a signal is received. pause()

always returns –1 unless the signal received caused the process to
terminate, in which case pause() never returns.

See Also

sleep() , kill() ; F$Sleep in the OS-9 Technical Manual.

pause

The C Standard Library
Chapter 5

5-157

Initialize For Float Output (Obsolete)

Synopsis

pffinit()

Function

pffinit() was used on the 6809 to allow printf() to perform float and
double conversions. A dummy function named pffinit() exists here for
6809/68000 portability.

Important: pffinit() is an historical function and is likely to be removed
in a future release.

Initialize for Longs Output (Obsolete)

Synopsis

pflinit()

Function

pflinit() was used on the 6809 to allow printf() to perform long int
conversions. A dummy function named pflinit() exists here for 6809/
68000 portability.

Important: pflinit() is an historical function and is likely to be removed
in a future release.

pffinit()

pflinit()

The C Standard Library
Chapter 5

5-158

Power Function

Synopsis

#include <math.h>

double pow(x, y)

double x, y;

Function

pow() returns x raised to the power y. The values of x and y may not both
be zero. If x is not positive, y must be an integer.

Print Error Message

Synopsis

prerr(path, errnum)

int path; /* path of err message file; 0 = stnd format */

short errnum; /* error number */

Function

prerr() prints an error message on the standard output path. If path is
zero, the message corresponding to the error number errnum is printed as
ERROR #hhh.lll, with hhh being the high byte of the error number, lll
being the lower. If path is non-zero, that path is assumed to be a file
containing error message text which is printed along with the error number.

See Also

F$PErr in the OS-9 Technical Manual.

pow()

prerr()

The C Standard Library
Chapter 5

5-159

Formatted Output

Synopsis

#include <stdio.h>

int printf(control [,arg0[,arg1...]])

char *control; /* pointer to control string */

Function

printf() , fprintf() , and sprintf() are C standard library functions that
perform formatted output. Each of these functions converts, formats, and
prints the args (if any) as indicated by the control string. printf() places its
output on standard output.

The field width and/or precision may be specified by an asterisk (*) instead
of a digit string. In these cases, the field width and/or precision is specified
by an int argument. These arguments must appear before the argument to
be converted. A negative field width argument is interpreted as a ‘–’ flag
followed by a positive field width. A negative precision argument
is ignored.

The control string determines the format, type, and number of the
following arguments expected by the function. If the control string does
not match the arguments correctly, the results are unpredictable.

The control string may contain characters to copy directly to the output,
and/or format conversion specifications. Each format specification causes
the function to take the next successive argument for output conversion.

A format specification consists of a percent (%) character followed by (in
this order):

1. An optional hyphen (–) that means the field is left justified.

2. An optional string of digits indicating the field width required. The
field is at least this wide and may be wider if the conversion requires
it. The field is right justified (padded on the left) unless the hyphen is
present (padded on the right). The default padding character is a
space. If the digit string starts with a zero, the padding character is 0.

3. An optional period (.) and a digit string (the precision). For floating
point arguments this indicates the number of digits to follow the
decimal point on conversion. For strings, the maximum number of
characters of the string argument to be printed.

printf()

The C Standard Library
Chapter 5

5-160

4. An optional character l indicating that the following d, x, or o is the
specification for a long integer argument. In this compiler, the types
long and int are synonymous; the l has no effect. It appears for ease
of porting programs to and from other machines.

5. A conversion character indicates the argument type and the desired
conversion. The recognized conversion characters are:

Character: Definition:

d,o,x,X The integer argument is converted to a signed integer, octal, or
hexadecimal, respectively. The ranges for these types are:

signed integer –2,147,483,648 to 2,147,483,647
octal 0 to 037777777777
hex 0 to 0xffffffff

The conversion X prints the alphabetic letters of a hex number in upper
case rather than lower case.

u The integer argument is converted to an unsigned integer in the range 0
to 4,294,967,295.

f The double argument is converted to [–]nnn.nnn, where the digits after the
decimal point are specified as above. If not given, the precision defaults to
six digits. If the precision is zero, no decimal point or following digits are
printed.

e,E The double argument is converted to [–]n.nnne({{char177}})nnn. One digit
appears before the decimal point. The precision gives the digits following
the decimal point. If no precision is given, six digits are used. If the
precision is zero, no decimal point appears. The conversion E produces a
number using E instead of e preceding the exponent. The exponent
always contains three digits. The resulting value is rounded before
printing.

g,G The double argument is converted to style e or f depending on the value
resulting from the conversion. e format is used only if the exponent
resulting from the conversion is less than –4 or greater than the precision.
If no precision is given, six digits are used. Trailing zeroes are removed
from the result. A decimal point appears only if followed by a digit. The
resulting value is rounded before printing.

c The argument is printed as a character.

s The argument is a pointer to a string. Characters from the string are
printed up to a null byte, or until the number of characters indicated by the
precision have been printed. If the precision is zero or missing, the
characters are not counted.

% (or any unrecognized character) No argument corresponding; the
character is printed.

The C Standard Library
Chapter 5

5-161

Caveats

Most errors with printf() are caused by the arguments being passed not
corresponding in type and number with the control string, which always
cause unpredictable results. Also, passing a NULL pointer (0) as the
pointer for the %’s conversion is even more unpredictable.

See Also

fprintf() , sprintf() , and scanf()

Examples

printf(“Value %d(dec), %x(hex),

%o(octal)\n”,val,val,val);

In this example, s points to control string.

printf(s,x,y,z);

This example has a 16–character general float field.

printf(“%–16.16g”,fltans);

The C Standard Library
Chapter 5

5-162

Put Next Character to File, Standard Out

Synopsis

#include <stdio.h>

int putc(c, fp)

int c; /* character to write */

FILE *fp; /* pointer to file */

int putchar(c)

char c;

Function

putc() writes the character c to the file pointed to by fp. putchar(c) is
equivalent to: putc(c,stdout). putc() and putchar() return –1 if
unsuccessful; otherwise, they return the character passed.

Use the following low-level functions when reading from a file:

Function: Definition:

write() Outputs characters up to a specified byte count in raw mode. No
conversion takes place on the output stream and the characters appear in
the file (or device) exactly as written.

writeln() Honors the various mappings of characters associated with a Serial
Character device such as a terminal and in any case returns to the caller
as soon as a carriage return is written. Normal output conversion consists
of possible conversion of carriage return to carriage return/linefeed,
expansion of tab to spaces, handling of screen line count pause, etc.

In the vast majority of cases, it is preferable to use writeln() for accessing
Serial Character devices and write() for any other file output. putc() uses
this strategy. As file output is through putc(), so do all the other library
output functions.

The choice is made when the first call to putc() is made after the file is
opened. The system is consulted for the status of the file. A flag bit is set in
the file structure accordingly.

You may force the choice by setting the relevant bit before a call to putc().
The flag bits are defined in the <stdio.h> header file as _RBF and _SCF.

putc(), putchar()

The C Standard Library
Chapter 5

5-163

Use the following method to set the flag bits. Assuming that the file
pointer (as returned by fopen()) is fp, the following forces writeln() and
write() on output, respectively:

fp–>_flag |= _SCF;

fp–>_flag |= _RBF;

You can use this method on the standard streams, stdout and stderr, without
the need for calling fopen() but you must do it before any output is
performed on the stream.

When you want to output characters one byte at a time without buffering,
use this technique:

fp–>_flag |= _UNBUF;

This causes data to be written to the file one byte at a time.

If a file is open for update (fopen() action r+ or w+), the program is
required to do a fseek() before changing from getc() to putc() or putc() to
getc(), even if no effective file position change occurs. This is done to
flush (or fill) the buffer so input or output can proceed in the
opposite direction.

Caveats

It is not a good idea to call read() or write() on a path that is buffered
because the buffered data and the low–level I/O may not occur in the
correct order.

Important: Due to the buffering, RBF record–locking is ineffective. If an
application requires the OS-9 record–locking facilities, low–level I/O calls
and program buffering is required.

See Also

fopen() , getc()

The C Standard Library
Chapter 5

5-164

Output a String to a File

Synopsis

#include <stdio.h>

puts(ptr)

char *ptr; /* pointer to string */

Function

puts() copies the null terminated string pointed to by ptr onto the file
stdout. With the exception that a \n is written out after the string, the effect
is exactly that of:

fputs(ptr,stdout)

The string terminating zero byte is not copied. puts() returns its first
argument, or EOF (–1) if an error occurs.

Caveats

The inconsistency of the new line being appended by puts() and not by
fputs() is dictated by history and the desire for compatibility.

See Also

puts() , gets() , fgets()

puts()

The C Standard Library
Chapter 5

5-165

Put a Word to a File

Synopsis

#include <stdio.h>

int putw(w, fp)

int w; /* word to write */

FILE *fp; /* pointer to file */

Function

putw() writes the integer w to the file pointed to by fp. putw() neither
assumes nor causes any special alignment in the file. On success, putw()
returns the value it has written. Otherwise, it returns –1.

Caveats

putw() , like getw() , is machine-dependent because the size of the integer
it outputs varies with the integer size of the machine on which it resides.
This compiler defines int values as four byte quantities, but putw() actually
outputs two bytes.

putw()

The C Standard Library
Chapter 5

5-166

Quick Sort

Synopsis

qsort(base, n, size, compfunc)

char *base; /* pointer to array */

int n, /* number of items in array */

 size; /* size of items in array */

int (*compfunc)(); /* pointer to function returning int */

Function

qsort() implements the quick-sort algorithm for sorting an arbitrary array
of items.

base is the address of the array of n items of size size. compfunc is a
pointer to a comparison function supplied by the user (or usually just
strcmp()). The comparison function is called by qsort() with two pointers
to items in the array to compare. It should return an integer which is less
than, equal to, or greater than 0, where, respectively, the first item is less
than, equal to, or greater than the second.

Caveats

This function is provided as a convenient sorting function for portability
purposes. Because qsort() moves entire records while sorting, any
non-trivial use of this function is better replaced with a sort and interface
of your choice.

qsort()

The C Standard Library
Chapter 5

5-167

Read Bytes From a Path

Synopsis

int read(path, buffer, count)

int path; /* path from which to read */

char *buffer; /* pointer to buffer for read */

unsigned count; /* minimum size of buffer */

int readln(path, buffer, count)

int path; /* path to read */

char *buffer; /* pointer to read buffer */

unsigned count; /* minimum size of buffer */

Function

read() reads bytes from a path. The path number path is an integer which
is one of the standard path numbers 0, 1, or 2, or a path number returned
from a successful call to open(), creat(), create(), or dup(). buffer is a
pointer to space with at least count bytes of memory into which read() puts
the data read from the path.

It is guaranteed that at most, count bytes are read, but often less are read,
either because the path serves a terminal and input stops at the end of a line
or the end-of-file has been reached.

readln() causes line-editing such as echoing to take place and returns
once a \n is read in the input or the number of bytes requested has been
read. readln() is the preferred call for reading from the terminal.

read() essentially does a raw read, that is, the read is performed without
translation of characters. The characters are passed to the program as read.

read() and readln() return the number of bytes actually read (0
indicating the end of the file). If an error occurs, they return –1 and the
appropriate error code is placed in the global variable errno.

Caveats

Notice that end-of-file is returned as zero bytes being read, not an
error indication.

See Also

I$Read , I$ReadLn in the OS-9 Technical Manual.

read(), readln()

The C Standard Library
Chapter 5

5-168

Returns a Pointer

Synopsis

#include <dir.h>

struct direct *readdir(dirp)
DIR *dirp /* pointer to directory */

Function

readdir() returns a pointer to a structure containing the next directory
entry. It returns NULL upon reaching the end of the directory or detecting
an invalid seekdir() operation.

See Also

closedir() , opendir() , rewinddir() , seekdir() , and telldir() .

Resize a Block of Memory

Synopsis

char *realloc(oldptr, size)
char *oldptr; /* old pointer to block of memory */
unsigned size; /* size of new memory block */

Function

realloc() re-sizes a block of memory pointed to by oldptr. oldptr should
be a value returned by a previous malloc(), calloc(), or realloc().

realloc() returns a pointer to a new block of memory. The size of this
new block is specified by size. The pointer is aligned for storing any type
of data.

If the size of the block of memory pointed to by oldptr is smaller than size,
the contents of the old block are truncated and placed in the new block. If
size is larger, the entirety of the old block’s contents begin the new block.

realloc (NULL,size) returns the same result as malloc(size).

realloc() returns NULL if the requested memory is not available or is
size is specified as zero.

See Also

malloc() , calloc() , free() , ebrk() , ibrk() , sbrk() , and _freemin() .

readdir()

realloc()

The C Standard Library
Chapter 5

5-169

Return File Pointer to Zero

Synopsis

#include <stdio.h>

int rewind(fp)

FILE *fp; /* /* file pointer */

Function

rewind() is equivalent to:

fseek(fp,0,0);

Zero is returned if the rewind is successful. Otherwise, –1 is returned.

See Also

fseek()

Resets the Position of the Directory Stream

Synopsis

#include <dir.h>

rewinddir(dirp)

DIR *dirp; /* pointer to directory */

Function

rewinddir() resets the position of the named directory stream to the
beginning of the directory.

See Also

closedir() , opendir() , readdir() , seekdir() , and telldir()

rewind()

rewinddir()

The C Standard Library
Chapter 5

5-170

Search for Character in String

Synopsis

#include <strings.h>

char *rindex(ptr, ch)

char *ptr; /* pointer to string to search */

char ch; /* search character */

Function

rindex() returns a pointer to the last occurrence of the character ch in the
string pointed to by ptr. If the character is not found, the function returns a
NULL (0).

Caveats

The following example code fragment looks for a period (.) in the string
string and sets ptr to point to it. The searching is started from the end of the
string and progresses to the front of the string. Note that ch is a character,
not a pointer to a character:

func()

{

char *ptr,*string;

if((ptr = rindex(string,’.’)) {

 process(ptr);

} else {

 printf(“No ’.’ found!\n”);

}

}

See Also

index()

rindex()

The C Standard Library
Chapter 5

5-171

Extend Data Memory Segment

Synopsis

char *sbrk(size)

unsigned size; /* size of memory block desired */

Function

sbrk() allocates memory from the top of the data area upwards.

Grows Toward
Higher Address

sbrk Area

Stack Area

ibrk Area

Program
Data Area

Lowest Address

sbrk() grants memory requests by calling the F$Mem system call. This
method resizes the data area to a larger size; the new memory granted is
contiguous with the end of the previous data memory.

On systems without an MMU, this call is certain to fail quickly, because it
may keep growing in size until the data area reaches other allocated
memory. At this point, it is impossible to increase in size and an error is
returned. A program may be able to increase its data size only 20K, even if
there is 200K available elsewhere.

To gain the most utility of the 68000 addressing space, use the ebrk()
function which returns pointers to memory no matter where it is located in
the system.

See Also

ibrk() , ebrk() ; F$Mem in the OS-9 Technical Manual.

sbrk()

The C Standard Library
Chapter 5

5-172

Input Strings Conversion

Synopsis

#include <stdio.h>

scanf(control [,arg...])

char *control; /* pointer to control string */

Function

scanf() performs conversions from the file pointer stdin. This is
equivalent to fscan(stdin,control[,arg...]).

Each form of the function (scanf(), fscanf(), and sscanf()) expects a control
string, similar to printf, containing conversion specifications, and zero or
more pointers to objects into which the converted values are stored.

The functions return EOF (–1) on end of input or error, or a count of the
items successfully matched. If the count does not indicate the expected
number of items, a match problem occurred.

The control string may contain three types of fields:

 spaces, tab characters, or \n which match any of the three in
the input

 characters (not among the above nor %) which must match
characters in the input

 a percent sign (%) followed by an optional asterisk (*) denoting
suppression of assignment, an optional field width maximum, and
a conversion character indicating the type expected

A conversion character controls the conversion to apply to the next field
and indicates the type of the corresponding pointer argument. A field
consists of consecutive non-space characters and ends when either an input
character is inappropriate for the conversion or a specified field width is
exhausted. When one field is finished, white space characters are passed
over until the next field is found.

scanf()

The C Standard Library
Chapter 5

5-173

The following conversion characters are recognized:

Character: Definition:

d,o,x A decimal string, octal string, or hexadecimal string is expected on input,
respectively. The argument must be a pointer to an integer.

s A string of non-space characters is expected and is copied to the buffer
pointed to by the corresponding argument with a null byte appended. The
caller must ensure the buffer is large enough for the string. The input
string is terminated by a space, tab, or newline (\n).

c A character is expected and is copied into the byte pointed to by the
argument. The white space skipping is suppressed for this conversion. If a
field width is given, the argument is assumed to point to a character array
and the number of characters indicated is copied to it. To ensure that the
next non-white space character is read, use %1s with an argument that
points to at least four bytes.

e,f A floating point representation is expected; the argument must be a
pointer to a float. Any of the usual ways of writing floating point numbers
are recognized.

[This denotes the start of a set of match characters, the inclusion or
exclusion of which delimits the input field. The white space skipping is
suppressed. The corresponding argument should be a pointer to a
character array. If the first character in the match string is not a circumflex
(^), characters are copied from the input as long as they can be found in
the match string. If the first character is a circumflex (^), copying continues
while the characters cannot be found in the match string. The match string
is delimited by a right square bracket (]).

D,O,X Similar to d,o,x, but the argument is assumed to point to a long. In this
compiler, long and int are synonymous.

E,F Similar to e and f , but the argument is assumed to point to a double.

% A match for % is sought; no conversion takes place.

The conversion characters d, o, and x may be preceded by l or h to indicate
that argument list contains a pointer to a long or short rather than to an int.
Each of the functions returns a count of the number of fields successfully
scanned. scanf() terminates at the end of the control string, when
end-of-file is encountered, or when an input character conflicts with the
control string. In the latter case, the offending character is left unread in the
input stream.

Caveats

The returned count of matches/assignments does not include character
matches and assignments suppressed by an asterisk (*). The arguments
must all be pointers. It is a common error to call scanf() with the value of
an item rather than a pointer to it. Also, the \n of an input line must be
explicitly matched.

See Also

fscanf() , sscanf()

The C Standard Library
Chapter 5

5-174

Sets the Position of the Next readdir

Synopsis

#include <dir.h>

seekdir(dirp, loc)

DIR *dirp; /* pointer to directory */

long loc;

Function

seekdir() sets the position of the next readdir() operation on the directory
stream. The new position reverts to the one associated with the directory
stream when the telldir() operation was performed.

Values returned by telldir() are valid only for the lifetime of the associated
dirp pointer. If the directory is closed and then reopened, the telldir() value
may be invalidated. It is safe to use a previous telldir() value immediately
after a call to opendir() and before any calls to readdir().

See Also

closedir() , opendir() , readdir() , rewinddir() , telldir()

seekdir()

The C Standard Library
Chapter 5

5-175

Fix File Buffer

Synopsis

#include <stdio.h>

setbuf(fp, buffer)

FILE *fp; /* pointer to file */

char *buffer; /* pointer to file buffer */

Function

Normally, when a file is opened by fopen() and a character is written to or
read from it via getc() or putc(), a buffer is obtained from the system (if
required) and assigned to the file. setbuf() assigns a user buffer to the file
instead of the system-assigned buffer. setbuf() must be used after the file
has been opened and before any I/O has taken place.

The buffer must be of sufficient size and remain in effect until fp is closed.
A manifest constant, BUFSIZ, is defined in the <stdio.h> header file that is
normally assigned as the buffer size.

If buffer is NULL (0), the file becomes unbuffered and characters are read
and written singly.

See Also

getc() , putc() , fopen()

setbuf()

The C Standard Library
Chapter 5

5-176

Set System Time

Synopsis

#include <time.h>

setime(timebuf)

struct sgtbuf *timebuf; /* pointer to time buffer */

Function

setime() sets the system time from the time buffer pointed to by timebuf.
The time units are defined in the <time.h> header file.

If successful, setime() returns zero. Otherwise, –1 is returned and the
appropriate error code is placed in the variable errno.

See Also

getime()

Non-Local Goto

Synopsis

#include <setjmp.h>

setjmp(env)

jmp_buf env; /* program environment structure */

Function

setjmp() and longjmp() provide a way to perform gotos between
functions in C. See the discussion of longjmp() for full details on setjmp().

See Also

longjmp()

setime()

setjmp()

The C Standard Library
Chapter 5

5-177

Set Process Priority

Synopsis

setpr(pid, prior)

int pid; /* process ID */

short prior; /* new priority for process */

Function

setpr() sets the process indicated by pid to have a priority of prior. The
lowest priority is zero, the highest is 65535.

setpr() returns –1 if an error occurs such as the process not having the
same user ID as the caller. If an error occurs, the appropriate error code is
placed in the global variable errno.

setpr()

The C Standard Library
Chapter 5

5-178

Set File Status

Synopsis

#include <sgstat.h>

setstat(code, path, buffer) /* code = 0 */

int code,

 path; /* path number */

char *buffer; /* ptr to buffer containing path desc opts */

setstat(code, path, size) /* code = 2 */

int code,

 path; /* path number */

long size; /* new file size */

Function

setstat() sets the path options or the file size of the file open on path.

If code is zero, the buffer is copied to the path descriptor options section.
The header file <sgstat.h> contains the definitions for the path options.

If code is 2, size should be an int specifying the new file size.

If an error occurs, both forms of the call return –1 and place the
appropriate error code in the global variable errno.

Caveats

This call exists for 6809 portability. The _ss functions are the preferred
versions of these function calls.

See Also

getstat() , any C function name beginning with _ss; I$SetStt in the
OS-9 Technical Manual.

setstat()

The C Standard Library
Chapter 5

5-179

Set User ID

Synopsis

int setuid(uid)

int uid; /* user ID */

Function

setuid() sets the group/user ID of the process to uid. The following
restrictions govern the use of setuid():

 User number 0.0 may change his/her ID to anything
without restriction.

 A primary module owned by user 0.0 may change its ID to
anything without restriction.

 Any primary module may change its user ID to match the
module’s owner.

If the call fails, –1 is returned and the appropriate error code is placed in
the global variable errno.

See Also

getuid()

setuid()

The C Standard Library
Chapter 5

5-180

Controls Process’s Signal Handling

Synopsis

int sigmask(level)

int level; /* process signal level; 0 = clear */

 /* 1 = increment */

 /* –1 = decrement (not below 0) */

Function

Each process descriptor contains an internal variable called the signal
mask, which determines the process’s signal handling. sigmask() controls
the process’s signal mask.

If a signal is received by a process whose signal mask is zero, normal
program flow is interrupted and the signal is processed by the execution of
the program’s intercept routine.

If a signal is received by a process whose signal mask is non-zero, the
signal is placed in a queue of signals waiting to be processed. The queued
signals become active only when the process’s signal mask becomes zero.

The process’s signal mask is automatically incremented during the
execution of its intercept routine. This prevents the intercept routine from
being accidentally re-entered if a new signal arrives. The process may use
sigmask() within its intercept routine to allow re-entrant signals or to force
the signal mask to remain non-zero when normal program
execution resumes.

When a process makes an F$Sleep or F$Wait system call, its signal mask is
automatically cleared. If any signals are pending, the process returns to the
intercept routine without sleeping.

The S$Kill and S$Wake signals ignore the state of the signal mask and are
never queued. S$Kill terminates the receiving process, and S$Wake
ensures that the receiving process is active.

If an error occurs, sigmask() returns –1 and the appropriate error code is
placed in the global variable errno. If no error occurs, sigmask()
returns zero.

sigmask()

The C Standard Library
Chapter 5

5-181

Caveats

I/O operations using the cio library should not be performed by both the
main program and the intercept routine.

If an intercept routine is exited with the longjump() function, the signal
mask is still set to one. Generally, the destination of the longjump should
unmask signals immediately.

The depth to which signals may queue is limited only by
available memory.

See Also

kill() and intercept() C functions; F$SigMask in the OS-9
Technical Manual.

Sine Function

Synopsis

#include <math.h>

double sin(x)

double x;

Function

sin() returns the sine of x as a double float. The value of x is in radians.

sin()

The C Standard Library
Chapter 5

5-182

Suspend Execution For a Time

Synopsis

sleep(seconds)
unsigned seconds;

Function

sleep() suspends the calling process for the specified time. A sleep time
of zero seconds sleeps indefinitely. sleep() returns the number of ticks
remaining to sleep if awakened prematurely by a signal.

See Also

tsleep() ; F$Sleep in the OS-9 Technical Manual.

Formatted Output

Synopsis

#include <stdio.h>

int sprintf(buffer, control [,arg0[,arg1...]])
char *buffer; /* pointer to output buffer array */
char *control; /* pointer to control string */

Function

printf() , fprintf() , and sprintf() are C standard library functions that
perform formatted output. Each of these functions converts, formats, and
prints the args (if any) as indicated by the control string.

sprintf() places its output into the array pointed to by buffer; the string
is terminated by a null byte. The function returns the number of characters
placed in the buffer, not including the null byte.

The control string determines the format, type, and number of the
following arguments expected by the function. If the control string does
not match the arguments correctly, the results are unpredictable. See the
discussion of printf() for details on the control string.

The field width and/or precision may be specified by an asterisk (*) instead
of a digit string. In these cases, the field width and/or precision is specified
by an int argument. These arguments must appear before the argument to
be converted. A negative field width argument is interpreted as a ‘–’ flag
followed by a positive field width. A negative precision argument
is ignored.

See Also

printf() , fprintf()

sleep()

sprintf()

The C Standard Library
Chapter 5

5-183

Square Root Function

Synopsis

#include <math.h>

double sqrt(x)

double x;

Function

sqrt() returns the square root of x. x must not be negative.

Allocate Colored Memory

Synopsis

#include <memory.h>

char *srqcmem(bytecnt, memtype)

int bytecnt, /* size of memory to allocate */

 memtype; /* type of memory to allocate */

Function

srqcmem() is a direct hook to the F$SRqCMem system call. bytecnt is
rounded to a system-defined block size. The size of the allocated block is
stored in the global integer variable _srqcsiz. If bytecnt is 0xffffffff, the
largest contiguous block of free memory in the system is allocated.

memtype indicates the specific type of memory to allocate. <memory.h>
contains definitions of the three types of memory that you may specify:

Type: Definition:

SYSRAM System RAM memory

VIDEO1 Video memory for plane A

VIDEO2 Video memory for plane B

sqrt()

srqcmem()

The C Standard Library
Chapter 5

5-184

If memtype is zero, no memory type is specified. Consequently, any
available system memory may be allocated.

If successful, a pointer to the memory granted is returned. The pointer
returned always begins on an even byte boundary. If the request was not
granted, the function returns the value –1 and the appropriate error code is
placed in the global variable errno.

Important: srqcmem() is identical to _srqmem() with the exception of the
additional color parameter.

See Also

_srqmem() , sbrk() , ibrk() , ebrk() , _srtmem() , malloc() , free() ;
F$SRqCMem in the OS-9 Technical Manual.

Input Strings Conversion

Synopsis

#include <stdio.h>

sscanf(string, control [,arg...])

char *string; /* pointer to input string */

char *control; /* pointer to control string */

Function

sscanf() performs conversions from the input string pointed to by string.
sscanf() expects a control string, similar to printf(), containing
conversion specifications, and zero or more pointers to objects into which
the converted values are stored.

The function returns EOF (–1) on end of input or error, or a count of the
items successfully matched. If the count does not indicate the expected
number of items, a match problem occurred.

The control string is described in detail in the discussion of scanf().

See Also

scanf() , fscanf() , printf()

sscanf()

The C Standard Library
Chapter 5

5-185

Obtain Size of Stack Used

Synopsis

int stacksiz()

Function

If the stack checking code is in effect, a call to stacksiz() returns the
maximum number of bytes of stack used at the time of the call. You can
use this function to determine the stack size a program requires.

Important: This function is historical and will likely be removed in a
future release.

See Also

freemem()

String Catenation

Synopsis

#include <strings.h>

char *strcat(s1, s2)

char *s1, /* pointer to original string */

 s2; / pointer to string to append to s1 */

Function

strcat() appends a copy of the string pointed to by s2 to the end of the
string pointed to by s1. Null-byte terminated strings are assumed. strcat()
returns its first argument.

Caveats

The calling routine is responsible for ensuring adequate space to append s2
to s1.

stacksiz()

strcat()

The C Standard Library
Chapter 5

5-186

String Comparison

Synopsis

#include <strings.h>

int strcmp(s1, s2)

char *s1, /* pointer to string to compare */

 s2; / pointer to string to compare */

Function

strcmp () compares the strings pointed to by s1 and s2 for lexicographic
order and returns an integer less than, equal to, or greater than zero, where
respectively, s1 is less than, equal to, or greater than s2. Null-byte
terminated strings are assumed.

String Copy

Synopsis

#include <strings.h>

char *strcpy(s1, s2)

char *s1, /* pointer to destination string */

 s2; / pointer to source string to copy */

Function

strcpy () copies characters from s2 to the space pointed to by s1. Null-byte
terminated strings are assumed. If s2 is too long, s1 is not null-terminated.

strcpy() returns its first argument.

Caveats

strcpy() assumes that there is adequate space pointed to by s1 to do the
copy. The calling routine is responsible for ensuring that the space
is adequate.

strcmp()

strcpy

The C Standard Library
Chapter 5

5-187

Copy Old OS-9 Strings

Synopsis

#include <strings.h>

char *strhcpy(s1, s2)

char *s1, /* pointer to destination string */

 s2; / pointer to source string to copy */

Function

strhcpy() makes a copy of the string pointed to by s2 in the string pointed
to by s1. The s2 string is assumed to have the high-order bit set on the
character byte indicating the last character. The function copies the bytes
from s2 until the terminator to s1 removes the high-bit from the terminator
character. It then appends a null byte to the output string.

strhcpy() is used primarily for copying directory names from RBF disks.

The function returns its first argument.

Caveats

strhcpy() assumes there is adequate space pointed to by s1 to do the copy.
The calling routine is responsible for verifying the space.

Determine String Length

Synopsis

#include <strings.h>

int strlen(s)

char *s; /* pointer to string */

Function

strlen() returns the number of non-null characters in the string pointed to
by s. The function stops when the first null byte is encountered.

strhcpy()

strlen()

The C Standard Library
Chapter 5

5-188

String Catenation

Synopsis

#include <strings.h>

char *strncat(s1, s2, count)

char *s1, /* pointer to original string */

 s2; / pointer to string to append to s1 */

int count; /* maximum number of characters to append */

Function

strncat() appends a copy of the string pointed to by s2 to the end of the
string pointed to by s1. The function copies, at most, count characters.
Null-byte terminated strings are assumed. strncat() returns its
first argument.

Caveats

The function assumes there is room to copy s2 at the end of s1. Space
needs to be properly allocated by the calling routine.

String Comparison

Synopsis

#include <strings.h>

int strncmp(s1, s2, count)

char *s1, /* pointer to string to compare */

 s2; / pointer to string to compare */

int count; /* maximum number of characters to compare */

Function

strncmp() compares the strings pointed to by s1 and s2 for lexicographic
order and returns an integer less than, equal to, or greater than zero, where,
respectively, s1 is less than, equal to, or greater than s2. The function
compares, at most, count characters. Null-byte terminated strings
are assumed.

strncat()

strncmp()

The C Standard Library
Chapter 5

5-189

String Copy

Synopsis

#include <strings.h>

char *strncpy(s1, s2, count)

char *s1, /* pointer to destination string */

 s2; / pointer to source string to copy */

int count; /* maximum number of characters to copy */

Function

strncpy() copies characters from s2 to the space pointed to by s1, the
number of which is determined by count.

If the string s2 is too short, s1 is padded with null bytes to make up the
length difference. If s2 is too long, s1 is not null-terminated.

Null-byte terminated strings are assumed. strncpy() returns its
first argument.

Caveats

The function assumes that there is adequate space pointed to by s1 to do
the copy. The calling routine is responsible for ensuring that the space
is adequate.

strncpy()

The C Standard Library
Chapter 5

5-190

String to Double Conversion

Synopsis

#include <math.h>

double strtod(nptr, endptr)

char *nptr; /* pointer to beginning of string */

char **endptr; /* specifies first character after converted string */

Function

strtod() parses a character string and converts it to the associated
numeric value of type double. nptr pointes to the beginning of the string.
strtod() ignores all leading white space.

If successful, strtod() returns the converted value. The address of the first
character past the converted string is pointed to by endptr, if endptr !=
(char **) NULL.

If the string to be converted is empty, or the string does not have the
appropriate form, strtod() returns zero (NULL) and stores nptr in *endptr.

If the converted value causes an overflow, strtod() returns HUGE_VAL,
with the appropriate preceding sign. If the converted value causes an
underflow, strtod() returns zero. In either of these two cases, ERANGE is
placed in errno.

See Also

strtol() , strtoul()

strtod()

The C Standard Library
Chapter 5

5-191

String to Long Conversion

Synopsis

#include <limits.h>

unsigned long strtol(nptr, endptr, base)
char *nptr; /* pointer to beginning of string */
char **endptr; /* specifies first character after converted string */
int base; /* base of number string */

unsigned long strtoul(nptr, endptr, base)
char *nptr; /* pointer to beginning of string */
char **endptr; /* specifies first character after converted string */
int base; /* base of number string */

Function

strtol() parses a character string and converts it to the associated
numeric value of type long. strtoul() converts the string into an unsigned
long value. In all other respects, strtoul() and strtol() are identical.

nptr points to the beginning of the string. strtol() ignores all leading
white space.

base is the base of the number string to be converted. For example,
strtol(“377”, NULL, 8) returns 255. base must be zero or in the range of 2
– 36. If base is 16, strtol accepts a leading 0x or 0X. Digits from 10
through 35 should be represented by the letters ‘a’ through ‘z’ respectively
(case is not significant). Only digits valid with the specified base
are parsed.

If a base of zero is specified, strtol() accepts any form of constant that the
C compiler accepts, excluding l or L, which as a suffix indicates a long
constant. Optional preceding signs are also accepted. For example,
strtol(“0xffff”, NULL, 0) returns 65535.

If the string to be converted is empty or does not have the appropriate
form, strtol() returns zero (NULL) and *endptr contains nptr.

If the converted value causes an overflow, strtol() returns LONG_MAX or
LONG_MIN to indicate positive or negative values, respectively. If the
converted value causes an underflow, strtol() returns zero. In either of these
cases, ERANGE is placed in errno.

See Also

strtod()

strtol(), strtoul()

The C Standard Library
Chapter 5

5-192

Shell Command Execution

Synopsis

system(string)
char *string; /* pointer to command line string */

Function

system() passes its string to the host environment to be executed by the
command processor indicated by the SHELL environment variable. If the
SHELL variable is not set, the shell command processor is assumed. The
command processor executes the argument string as a command line.

The calling process is suspended until the shell command is completed.
system() returns the exit status of the created shell.

A null pointer may be used for string to inquire whether the command
processor exists. In this case, system() returns a non-zero value if and only
if the command processor is available. If passed a non-null pointer,
system() returns the exit status of the command processor.

See Also

os9exec() , wait()

Tangent Function

Synopsis

#include <math.h>

double tan(x)
double x;

Function

tan() returns the tangent of x as a double float. The value of x is
in radians.

Caveats

tan() may cause a trapv exception for values close to PI/2.

system()

tan()

The C Standard Library
Chapter 5

5-193

Returns the Current Location

Synopsis

#include <dir.h>

long telldir(dirp)

DIR *dirp /* pointer to directory */

Function

telldir() returns the current location associated with the named
directory stream.

See Also

closedir() , opendir() , readdir() , rewinddir() , seekdir() .

telldir()

The C Standard Library
Chapter 5

5-194

Get termcap Entries

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

int tgetent(bufptr, name)

char *bufptr, /* ptr to buffer for termcap entry data */

 name; / ptr to name of terminal entry */

Function

tgetent() extracts the entry for the terminal specified by name. The entry
is placed into the buffer pointed to by bufptr. The size of this buffer must
be at least 1024 characters and must remain intact for all subsequent calls
to tgetnum(), tgetflag(), and tgetstr().

If the termcap file cannot be opened, tgetent() returns –1. If the terminal
name cannot be found, 0 is returned. 1 is returned and the data placed in
the buffer if the terminal name is found.

The behavior of tgetent() can be modified if the shell environment
variables termcap and term are defined. If termcap is found in the
environment and its value string begins with a slash (/), that string is used
as the path to the file to be used instead the default termcap file. If the
value string does not begin with a slash and name is the same as the
environment string for term, tgetent() uses this file to search for the
terminal entry. This mode is useful for testing or custom termcap
definitions. If the termcap value string does not begin with a slash, the
string is used as the termcap string instead of reading a file.

Important: tgetent() must be called before any of the other termcap
library functions.

tgetent()

The C Standard Library
Chapter 5

5-195

Check Terminal Capability Presence

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

int tgetflag(id)

char *id; /* capability ID */

Function

tgetflag() returns 1 if the capability ID was specified for the terminal
and 0 if not specified for the terminal.

Get Terminal Capability ID

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

int tgetnum(id)

char *id; /* capability ID */

Function

tgetnum() returns the numeric value given for the capability id. If id was
not specified for the terminal, –1 is returned.

tgetflag()

tgetnum()

The C Standard Library
Chapter 5

5-196

Get Terminal Capability

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

char *tgetstr(id, strptr)

char *id, /* capability ID */

 **strptr; /* ptr to buffer for capability string */

Function

tgetstr() places the string given for capability id into the buffer pointed
to by the strptr pointer. strptr is then advanced past the last character of
the returned data.

The special escape codes are given earlier in this chapter. Cursor motion
and padding information are interpreted when the string is actually output
with tgoto() and tputs().

tgetstr()

The C Standard Library
Chapter 5

5-197

Get Cursor Movement Capability

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

char *tgoto(motion_string, column, line)

char *motion_string; /* cm capability string */

int column, /* destination column position */

 line; /* destination line number */

Function

tgoto() returns a string suitable for positioning the cursor on the terminal.
motion_string is the string given by the cm capability. column and line
specify the desired column and line destination for the cursor. The extern
variables UP and BC (set to the up and bc capability strings, respectively)
are used to avoid placing a null or newline character into the output string.

tgoto() returns a pointer to the translated motion string if the motion
string was successfully created, otherwise, the string “OOPS” is returned.

tgoto

The C Standard Library
Chapter 5

5-198

Get Calendar Time

Synopsis

#include <time.h>

time_t time(timer)

time_t *timer; /* pointer to returned calendar time */

Function

time() returns a value approximating the current Calendar Time. If timer
is non-null, the return value is stored at the location pointed to by timer. If
the Calendar Time is not available, time() returns (time_t) –1.

time() looks at the environment variable TZ to determine the local time
zone. If TZ is not set, time() uses USA Central Standard Time (CST). TZ
should have the following format:

zzz[+/–n][:ddd]

zzz is one of the supported time zone names listed below:

Value: Description:

GMT, UTC Greenwich Mean Time a.k.a. Coordinated Universal Time

PST, PDT USA Pacific Standard Time/Daylight Savings Time

CST, CDT USA Central Standard Time/Daylight Savings Time

EST, EDT USA Eastern Standard Time/Daylight Savings Time

YST Yukon Standard Time (Most of Alaska)

AST Aleutian/Hawaiian Standard Time

EET Eastern European Time

CET Central European Time

WET Western European Time

n is the optional number of minutes east (+) or west (–) of the time zone.

ddd is the optional handling Daylight Savings Time. Recognized values for
ddd are:

Value: Description:

no Do not use Daylight Savings Time.

usa Conforms to the US Uniform Time Act of 1967 and its various
amendments through 1987.

eur Observe European Daylight Savings Time.

time()

The C Standard Library
Chapter 5

5-199

The American time zones specified above default to usa, with the
exception of AST which defaults to no. The European time zones specified
above default to eur and GMT/UTC defaults to no.

Caveat

Returning –1 to indicate an error, implies there is a (somewhat obscure)
one second interval that appears to be non-representable. The encoding of
times for time_t only represents times ranging from 1902 to
2038 (approximately).

See Also

getenv() , sysdate() , and julian() .

Character Translation

Synopsis

#include <ctype.h>

int toascii(c)

int c;

Function

toascii() returns its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with
other systems.

See Also

getc()

toascii()

The C Standard Library
Chapter 5

5-200

Character Translation

Synopsis

#include <ctype.h>

int tolower(c)

int c;

Function

tolower() is a genuine function (as opposed to _tolower() which is a
macro) that requires a character in the range of –1 to 255. If the argument
represents an uppercase letter, the value returned is the corresponding
lowercase letter. All other values in the domain are returned unchanged.

See Also

_tolower()

Charater Translation

Synopsis

#include <ctype.h>

int toupper(c)

int c;

Function

toupper() is a genuine function (as opposed to _toupper() which is a
macro) that requires a character in the range of –1 to 255. If the argument
represents a lowercase letter, the value returned is the corresponding
uppercase letter. All other values in the domain are returned unchanged.

See Also

_toupper()

tolower()

toupper()

The C Standard Library
Chapter 5

5-201

Output Capability String

Synopsis

#include <termcap.h>

extern char *BC;

extern char *UP;

extern char PC_;

extern short ospeed;

tputs(str, lines_affected, outfunc)

char *str; /* pointer to capability string */

int lines_affected, /* number of lines affected by operation */

 (*outfunc)(); /* pointer to output function */

Function

tputs() is used to output the capability strings to the terminal. tputs()

decodes leading padding information from the str string.

lines_affected is the number of lines affected by the operation.
lines_affected should be set to 1 if not applicable.

outfunc is called by tputs() to output each successive character of the
str string.

ospeed should contain the baud rate code as returned in _sgs_baud by the
_gs_opt() function. ospeed is used to calculate the number of fill characters
required when fill character delays are required. If ospeed is outside the
range of 1–16, no delays are attempted.

The PC_ variable should contain the pad character if it is other than
NULL (0).

tputs()

The C Standard Library
Chapter 5

5-202

Sleep for Specified Interval

Synopsis

tsleep(svalue)

unsigned svalue; /* sleep interval: 0 = sleep indefinitely */

/* 1 = one time slice */

/* high bit set: svalue = # of 1/256 secs */

Function

tsleep() deactivates the calling process for a specified interval given by
svalue. If svalue is zero, the process sleeps indefinitely. If svalue is one, the
process gives up a time slice. svalue is considered a tick count to sleep. If
the high bit of svalue is set, the remaining 31 bits are considered the
number of 256ths of a second to sleep.

If the sleeping process is awakened prematurely by a signal, tsleep()
returns the number of ticks remaining to be slept.

See Also

sleep() ; F$Sleep in the OS-9 Technical Manual.

tsleep()

The C Standard Library
Chapter 5

5-203

Unget a Character

Synopsis

#include <stdio.h>

int ungetc(c, fp)

char c; /* character to unget */

FILE *fp; /* file pointer */

Function

ungetc() inserts the character c into the buffer associated with the file
pointed to by fp. That character is returned by the next call to getc() on that
file. ungetc() returns the character c and leaves the file fp unchanged.

One character of pushback is guaranteed provided something has been read
from the file and the file is actually buffered.

If c is EOF (–1), ungetc() does nothing to the buffer and returns EOF.

Caveats

fseek() causes the pushed back character to be forgotten. A read from the
file is required before ungetc() can push back a character. The file stdin,
however, need not be read before a call to ungetc(). Only one character can
be pushed back onto a file until a getc() is performed.

See Also

getc() , fseek() , and setbuf()

ungetc()

The C Standard Library
Chapter 5

5-204

Unlink (Delete) a File

Synopsis

int unlink(name)

char *name; /* pointer to name of file to unlink */

Function

unlink() decrements the link count of the file whose pathname is name.
When all the links to a file have been removed, the space occupied by the
file on the disk is freed and the file ceases to exist.

If successful, unlink() returns 0. Otherwise, –1 is returned and the
appropriate error code is placed in the global variable errno.

Caveats

OS-9 does not yet support multiple links to a file. unlink() always causes
the file to be removed from the disk. Attempting to delete a file that is
open by the calling (or another) process results in a record-lock error.

See Also

I$Delete in the OS-9 Technical Manual.

unlink()

The C Standard Library
Chapter 5

5-205

Unlink (Delete) a File

Synopsis

#include <modes.h>

int unlinkx(name, mode)

char *name; /* pointer to pathlist of file to unlink */

short mode; /* access permission */

Function

unlinkx() decrements the link count of the file whose pathname is name.
If the mode passed indicates the execution directory, the path is assumed to
be based in the current execution directory. The header file <modes.h>
defines the legal mode values. When all the links to a file have been
removed, the space occupied by the file on the disk is freed and the file
ceases to exist.

If successful, unlinkx() returns 0. Otherwise, –1 is returned and the
appropriate error code is placed in the global variable errno.

Caveats

OS-9 does not yet support multiple links to a file. unlinkx() always
causes the file to be removed from the disk. Attempting to delete a file that
is open by the calling (or another) process results in a record-lock error.

See Also

I$Delete in the OS-9 Technical Manual.

unlinkx()

The C Standard Library
Chapter 5

5-206

Wait for Process Termination

Synopsis

wait(status)

unsigned *status; /* pointer to exit status */

wait(0)

Function

wait() suspends the current process until a child process has terminated.

The call returns the process ID of the terminating process and places the
exit status of that process in the unsigned int pointed to by status. If status
is passed as zero, no child status is available to the caller.

The lower 16-bits of the status value contains the argument of the exit() or
_exit() call as executed by the child process, or the signal number if it was
interrupted with a signal. A normally terminating C program with no
explicit call to exit() in main() returns a status of zero.

wait() returns –1 if there is no child process for which to wait, or 0 if a
signal was received before a child process terminated.

Caveats

Note that the status codes used in OS-9 may not be compatible with other
operating systems. A wait must be executed for each child process created.

See Also

os9fork() ; F$Wait in the OS-9 Technical Manual.

wait()

The C Standard Library
Chapter 5

5-207

Write Bytes to a Path

Synopsis

int write(path, buffer, count)
int path; /* path number */
char *buffer; /* pointer to buffer to write */
unsigned count; /* number of bytes to write */

int writeln(path, buffer, count)
int path; /* path number */
char *buffer; /* pointer to buffer to write */
unsigned count; /* number of bytes to write */

Function

write() writes bytes to a path. The path number path is an integer which
is one of the standard path numbers 0, 1, or 2, or a path number returned
from a successful call to open(), creat(), create(), or dup(). buffer is a
pointer to space with at least count bytes of memory from which write()
obtains the data to write to the path.

It is guaranteed that at most count bytes are written. If less bytes are
written, an error has occurred.

writeln() causes output-filtering to take place such as outputting a
linefeed after a carriage return, or handling the page pause facility.
writeln() writes, at most, one line of data. The end of a line is indicated
by a carriage return. writeln() is the preferred call for writing to
the terminal.

write() essentially does a raw write, that is, the write is performed
without translation of characters. The characters are passed to file (or
device) as transmitted by the program.

write() and writeln() return the number of bytes actually written. If an
error occurred, –1 is returned and the appropriate error code is placed in
the global variable errno.

Caveats

Notice that writeln() stops when the carriage return is written, even if the
byte count has not been exhausted. write() will do a raw write to the
terminal; no linefeeds after return are transmitted.

See Also

I$Write , I$WritLn in the OS-9 Technical Manual.

write(), writeln()

Section

3
OS-9/68000 Source Level
Debugger

There are five chapters in this section of the manual. The first is an
overview of Srcdbg. The next four introduce the various Srcdbg
commands. A single example program is provided to introduce each of the
commands. With this program, the user will have access to the actual
source code while examining the Srcdbg command examples. The last
chapter is included as a quick reference for Srcdbg commands and syntax.

The individual chapters include:

 Overview to Srcdbg: This chapter describes how to get in and out of
Srcdbg. This includes instructions on setting the proper environment
variables and the executive command line syntax. Srcdbg execution
characteristics and caveats are described in detail. The scope and syntax
of Srcdbg’s command set are also described.

 Debugger Control Commands: These commands allow the user to
control the execution of a program. They also control the
communication between the debugger and the program.

 Data Manipulation Commands: These commands allow the user to
access, examine and alter program data.

 System Commands: These commands allow the user access to the
source files being debugged and the OS-9 shell.

 Assembly Level commands: These commands allow the user to control
the execution of a program at the machine instruction level.

Chapter

6

6-1

Overview of SrcDbg

In order for SrcDbg to work properly, the following three conditions must
be met:

1. Current revisions of OS-9 and the C Compiler/Assembler/Linker
must be used.

2. Some environment variables must be set.

3. A symbol file must be generated.

In order to run SrcDbg, the “SrcDbg” file should be placed in your
execution directory. The C Compiler, Assembler and Linker are necessary
in order to generate the necessary files for debugging. These components
must be the following revisions (or greater):

Component: Revision:

C Compiler Rev 3.0

R68 Rev 1.9 (edition 54)

R68020 Rev 2.9 (edition 77)

L68 Rev 1.9 (edition 53)

The PORT environment variable must be set in order to use SrcDbg. PORT
specifies the terminal device name being used (e.g. /t1). SrcDbg uses
PORT to determine the device on which it is running. PORT is
automatically set by TSMON when logging onto a time-sharing system. If
a time-sharing system is not being used, PORT must be set manually. For
example, the following command sets PORT to /term:

setenv PORT /term

SrcDbg must also know in which directories to look for the compiled
program, its symbol file and its source file(s). The search routine uses the
SOURCE and PATH environment variables.

Overview of SrcDbg

C Compiler Revision
Requirements

Setting the Environment

Overview of SrcDbg
Chapter 6

6-2

PATH and SOURCE are defined as follows:

Variable: Description

PATH Specifies the directories to be searched for the compiled program, its
“.dbg” file, and its “.stb” file. For example:

setenv PATH /h0/cmds:/h0/usr/walden/cmds:/dd/cmds

SOURCE Specifies the directories to be searched for the source files of the program
to be debugged. For example:

setenv SOURCE .:/h0/usr/walden/work1:/h0/usr/walden/source

SOURCE and PATH do not have to be set in order to run SrcDbg. If they are
set, they are used by SrcDbg when searching for the following files:

Compiled Programs
SrcDbg first looks in memory to see if the program has already been
loaded into the module directory. If it is not found, the current execution
directory is searched. If the program is not there either, SrcDbg searches
the directories specified by the PATH environment variable. If it is still not
found, an error will be returned.

Symbol Files
SrcDbg first searches the STB directory of the current execution directory.
If the symbol file is not there or there is no STB directory, SrcDbg searches
the STB directory located in each of the directories specified by the PATH
environment variable. If the symbol file is not found in these directories,
the current execution directory is searched. If the symbol file is still not
found, each of the directories specified by the PATH is searched. If the
symbol file is still not found, an error will be returned.

Source Files
SrcDbg first looks in the current data directory for the source file(s). If not
found, SrcDbg searches the directories specified by the SOURCE
environment variable. If the files are still not found, an error will be
returned.

SrcDbg uses symbol files generated by the C Compiler and linker. The
program must be compiled with the “–g” option to create these symbol
files. For example:

cc program.c –g

The “.dbg” and “.stb”
Symbol Files

Overview of SrcDbg
Chapter 6

6-3

This creates two symbol files, <program_name>.dbg and
<program_name>.stb . The symbol files are created in the STB directory
located in the user’s current execution directory. If the STB directory does
not exist, the symbol files are created in the user’s execution directory. The
“.dbg” and “.stb” symbol files are read automatically by SrcDbg when the
debugging session begins.

Important: Using the “–g” option of the linker does not necessarily
accomplish the same effect. “l68 –g” will create “.dbg” files only if the “.r”
files were created with the “–g” option. In this case, they contain the
information necessary to create the “.dbg” files. If they were not compiled
with the “–g” option, only an “.stb” file is created.

The syntax for the SrcDbg command line is:

srcdbg {<srcdbg_opts>} [<program>] {<program_opts>} [[“]<redirections>[”]]

<srcdbg_opts> are the SrcDbg command line options:

Option: Description

–d SrcDbg will not read the “.dbg” file

–m[=]<memory> Extra memory will be allocated for <program>

–s SrcDbg will not read the “.stb” file

–z[=]<pathlist> SrcDbg will read commands from <pathlist>

<program> is the name of the C program to be debugged. <program_opts>
are passed directly to <program> as command line arguments.

Important: <options> specified in the Fo[rk] command have the same
effect as the <program_opts> specified on the SrcDbg command line. A
full description of the Fo[rk] command is provided in the Debugger
Control Commands chapter.

Shell filename wildcard processing can also be used. For example, in the
following command the wildcards are expanded by the Shell and passed to
SrcDbg, which in turn passes the filenames to “program”:

srcdbg program *.c

The standard paths of both SrcDbg and the program may be redirected by
specifying the redirected paths without enclosing quotes. For example:

srcdbg program >>>nil <data

Invoking SrcDbg

Overview of SrcDbg
Chapter 6

6-4

The program’s standard paths may be redirected by specifying the
redirected paths within quotes. For example:

srcdbg program “>>>nil <data”

By redirecting the program’s standard paths, I/O from SrcDbg remains
unaffected. If SrcDbg’s standard paths are redirected, all child Shells will
inherit the redirected paths. This could cause problems when trying to
execute the SrcDbg “shell” command.

Once SrcDbg is invoked it searches the current data directory for a file
named SrcDbg.init and processes the SrcDbg commands in the file. A
SrcDbg.init file is not required for use of SrcDbg, but it may be helpful if
the user wants to do the same set of commands each time SrcDbg
is invoked.

The SrcDbg.init file may include comments. Comments are indicated by
the command * (an asterisk).

For example, a SrcDbg.init file may look like this:

option watch fpu ;* turn off watch location and floating point register display

setenv MYENV “my program’s environment” ;* set an environment variable

setenv SOURCE C: TEST ;* set source directories custom for current directory

setenv PATH /n0/richard/h0/cmds ;* set PATH for future forks by this program

After the SrcDbg.init file has been processed, SrcDbg will process the
specified command line arguments and fork the compiled program. If the
compiled program is not found or could not be forked, the following error
is returned:

Could not fork “<file>” – Error #000:216 (E$PNNF) File not found.

SrcDbg:

The “SrcDbg: ” prompt indicates that SrcDbg is waiting for a command.

If SrcDbg is unable to fork the program, SrcDbg is not exited. Make sure
the compiled program exists and is in your execution directory and
try again.

After forking the program, SrcDbg searches for the “.dbg” and “.stb” files.
If one or both of these symbol files are not found, the following error
is returned:

Could not open symbol file “<symbol_file>”– Error

#000:216 file not found

SrcDbg:

Overview of SrcDbg
Chapter 6

6-5

If the symbol file is not found, SrcDbg is not exited. Make sure the missing
symbol file(s) exists and is in your execution directory. SrcDbg can still be
run without one or both of the symbol files. If there is no “.dbg”
information, only assembly level commands will be of use. If there is no
“.stb” information either, only assembly level commands will be of use,
and SrcDbg will not have symbolic information, only addresses. If there is
a “.dbg” file, but not an “.stb” file, symbols that are part of libraries which
have not been compiled with the –g option will not be recognized.

When the symbol files are found, they are examined to verify that they
match the code module being debugged. The CRC of the program module
is stored in each symbol file.

If the CRC held in either symbol file does not match the CRC of the
program module, the following prompt is returned:

Reading symbol file “<program_name>.dbg”:

Symbol file “<symbol_file>” does not match object module “<module>”

Do you wish to use these symbols? (y or n):

This message indicates one of two problems. The symbol file was not
generated at the same time as the program was compiled. This is usually
due to an old version of the program existing in memory. If this is the case,
answer “n” to the prompt, unlink the program (if no one is using it) and try
again. If the program module was altered by the FIXMOD utility, the CRC
of the module changes. The symbol file will still be current, but the CRC’s
will not match. If this was the case, answer “y” to continue.

Important: If a symbol file is used that does not actually match the
program module, SrcDbg’s behavior will be unpredictable.

After SrcDbg reads the program’s symbol information, the context of the
first executable instruction, usually located at _cstart, is displayed. In this
example, the program where is searching for a file named dirt:

$ SrcDbg where dirt

Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg:

Important: To reach the first executable source line, use the S[tep]
command or B[reak] at that line or G[o] to that line. For example:

SrcDbg: step

File: “where.c”

19: main(argc,argv)

 ^

Overview of SrcDbg
Chapter 6

6-6

Important: Do not use the N[ext] command to get to the first executable
source line. If the N[ext] command is used before the first executable
source line is encountered, the program will run to completion. This is
because the next executable source line in the current function (_cstart)
does not exist.

When the program being debugged passes through a traphandler module or
a subroutine module, SrcDbg will try to read the outside module’s symbol
file at that time. Then, the SrcDbg commands may be used in the outside
module just as they are used in the main program. If symbol information is
not found, SrcDbg’s assembly level commands may still be used in the
outside module.

SrcDbg provides an execution pointer indicating the current place of
execution of the program. The circumflex pointing to main in the example
above indicates the beginning of execution for the program “where”.

The execution pointer will stop at each of the following:

1. comma operator

2. logical AND (&&) or logical OR (||)

3. ternary operator (?:)

4. expression(s) of the following:

a. while loop

b. do loop

c. for loop

d. if statement

e. switch statement

f. return statement

5. initializer

6. expression statement

Consequently, when stepping through a program, SrcDbg may redisplay
the same line of source code and merely move the execution pointer to the
next execution position.

Overview of SrcDbg
Chapter 6

6-7

Use of MACROS in source code may cause the SrcDbg execution pointer
to become temporarily misaligned. The compiler system expands the
MACRO and gives the expanded code information to SrcDbg. SrcDbg will
display the correct, but unexpanded source line. The execution pointer will
try to indicate each of the expanded executable statements. This causes the
execution pointer to become temporarily misaligned.

Once the SrcDbg session is begun, “on-line” help is available using the
HELP command. Type “help ” or “?”.

SrcDbg will look for the HELP file in /dd/sys. If it is not found, the
following error is displayed:

Could not open file “/dd/sys/SrcDbg.hlp” – Error 000:216

SrcDbg:

SrcDbg may be exited at any point by entering the Q[uit] command or the
[Esc] key at a SrcDbg prompt. SrcDbg will close all necessary files and
return control to the Shell. The symbol files are NOT deleted, allowing you
to debug the same module at a later date.

Each SrcDbg command can be invoked using a long or a short form.
Throughout this manual the long form is shown within brackets appended
to the short form (i.e. L[ist]). For example, the following two L[ist]
commands accomplish the same result:

SrcDbg: l program.c

SrcDbg: list program.c

Most commands accept command line parameters. Because of the nature
of a source level debugger, the parameters often take the same form. The
three most important parameters are <scope_expr>, <line_num>,
<C_expr> and <location_expr>. These parameters will be described in
more detail later in this chapter.

Each program object has a scope. Scope is defined as the block in which
the object is known and the blocks which can access the object. In general,
this means the block containing the object and all blocks contained within
that block.

SrcDbg Help

Exiting SrcDbg

SrcDbg Command Syntax

SrcDbg Scope

Overview of SrcDbg
Chapter 6

6-8

As SrcDbg reads the program’s symbol files, SrcDbg creates a program
block “tree”. This tree helps define the scope of SrcDbg commands at any
specific time. To illustrate this, a debug process and its associated block
tree are listed in the next two pages. These files are included on the
distribution disk and may be compiled to enable the user to try
the examples.

In this illustration, there are several variables named “i”. Each of these has
a different scope.

Important: When more than one program object have the same name and
overlap in scope, the innermost object is assumed.

Debug Process Source Code

Example program:

program\file1.c program\file2.c

1 int var1; 1 static float var1;

2 int var2; 2 struct tag1 {

3 3 int i;

4 main(argc,argv) 4 char c;

5 int argc; 5 }var2;

6 char *argv[]; 6

7 {/* block 0 */ 7 static f()

8 extern void f(); 8 {

9 int i; 9 int i;

10 static int j; 10 i = 0;

11 11 }

12 g(i = argc); 12

13 if(i > 1) { /* block 1 */

14 int i;

15 i = i;

16 printf(“i = %d\n”,i);

17 f(i);

18 }

19 return i;

20 }

21

22 void f(i)

23 int i;

24 {

25 print(“%d\n”,i);

26 }

Overview of SrcDbg
Chapter 6

6-9

Example traphandler:

traphandler\file1.c traphandler\file2.c

1 int f(i) 1 int g(i)

2 register int i; 2 register int i;

3 { 3 {

4 return i; 4 return i;

5 } 5 }

Figure 9.1
Process Block Tree

Program Module

file1.c

var1var1 var2 main f tag1 var2 f

$blk1argc argv $blk0 i i c $blk0

i j $blk1

i

file2.c

Debug Process

Traphandler Module

file1.c file2.c

$blk0i $blk0i

f g

Overview of SrcDbg
Chapter 6

6-10

The scope of a command may be specified by using a scope expression. A
scope expression has the following syntax:

<module_name>[\<source file>]{\<identifier>}

or
<source_file>{\<identifier>}

or
<identifier>{\<identifier>}

A special form of the scope expression can be used by the I[nfo]
command:

<module_name>[\<source file>]{\<identifier>}[\<struct_union_enum_specifier>]

or
<source_file>{\<identifier>}[\<struct_union_enum_specifier>]

or
<identifier>{\<identifier>}[\<struct_union_enum_specifier>]

The <struct_union_enum_specifier> takes the form of:

enum <tag_identifier>

or
struct <tag_identifier>

or
union <tag_identifier>

or
<struct_identifier>[.<field_identifier>]

or
<union_identifier>[.<field_identifier>]

The following commands allow the user to specify the scope in which to
execute the command: L[ist], B[reak], I[nfo], P[rint], A[ssign], W[atch],
C[h]c, Con[text], G[o], C[hange], Di[sasm], Dil[ist], Mf[ill], Ms[earch],
Sy[mbol] and D[ump]. If a scope is not specified, by default, the current
scope is used. The current scope is the current block and all blocks
containing it. The current scope may be changed with the C[h]c command.

Scope Expressions

Overview of SrcDbg
Chapter 6

6-11

Using the example in Figure 9.1 and the I[info] command, the following
example scope expressions could be executed:

SrcDbg: info program\file2.c\var1

static float var1;

SrcDbg: info program\file1.c\f

void f(i)

int i;

SrcDbg: info program\file2.c\struct tag1

struct tag1 {

int i;

char c;

};

SrcDbg: info traphandler\file1.c\tentry\i

register int i;

SrcDbg allows the user to specify objects within program blocks by using
the notation “$blk<num>” for the block number within a program. The left
bracket following a compound statement begins each new block. The
associated right bracket ends the block. Blocks are successively numbered
from the beginning of each function starting with block 0 ($blk0).
Consequently, to refer to the variable “i” on line 17 the following full
scope expression would be used:

SrcDbg: info program\file1.c\main\$blk0\$blk1\i

int i;

SrcDbg does not always need full scope expressions. For example, if you
were at line 17 in “program\file1.c”, the command “info i” would reference
the “i” declared within block one ($blk1). To reference the variable “i”
declared in block zero ($blk0), you could use any of the
following commands:

info program\file1.c\main\$blk0\i

info file1.c\main\$blk0\i

info main\$blk0\i

info $blk0\i

When referencing static variables, types, structs, unions and enums that are
not in the current file, the appropriate file must be referenced (i.e. <file>\...
or <module>\<file>\...). Similarly, when referencing global symbols that
are not part of the current module, the appropriate module must be
referenced (i.e. <module>\<identifier>) .

Overview of SrcDbg
Chapter 6

6-12

Many commands use the <line_num> parameter. This specifies a line in a
specific program by its line number. The syntax for the line number
expression is:

<number>

or
<file>\<number>

or
<module_name>\<file>\<number>

If the “<file>\” format is not used, the current file is assumed to hold this
line <number>.

For example, using the previous program and the L[ist] command, the
following line number commands could be used:

List a file from line 7 to eof:

SrcDbg: list program\file2.c\7

 7: static f()

 8: {

 9: int i;

 10: i = 0;

 11: }

 12:

[end of file]

List a range:

SrcDbg: list program\file1.c\7 12

 7: { /* block 0 */

 8: extern void f();

 9: int i;

 10: static int j;

 11:

 12: g(i = argc);

List a function:

SrcDbg: list traphandler\g

 1: int g(i)

 2: register int i;

 3: {

 4: return i;

 5: }

[end of file]

Line Number Expressions

Overview of SrcDbg
Chapter 6

6-13

All C language expression operators are implemented with the
following exceptions:

Operator: Description

? ternary operator

++ increment operator

= assignment operator

–– decrement operator

, comma operator

Strings are not supported in C expressions. Character constants, however,
are supported. All supported C expressions are evaluated with
standard precedence.

Function calls may also be used in C expressions. For example:

SrcDbg: print f(i)

Limited “casting” is supported by SrcDbg. The following types may
be cast:

<type>

<pointer to struct>

<pointer to union>

<enum>

The supported “cast” syntax for these are, respectively:

 <type> := <type_name> {*}

<pointer to struct> := struct <tag_name> * {*}

 <pointer to union> := union <tag_name> * {*}

 <enum> := enum <tag_name> {*}

Register names may also be used in C expressions. The following registers
are supported for the MC68xxx:

Register: Description

.d0 - .d7 data registers

.a0 - .a7 address registers (.sp may be used for .a7)

.sr lower order byte of the status register (.cc may be used for .sr)

.pc program counter

C Expressions

Overview of SrcDbg
Chapter 6

6-14

These registers are supported for the MC68881 floating point coprocessor:

Register: Description

.fp0 – .fp7 floating point registers

.fpcr control register

.fpsr status register

.fpiar instruction address register

SrcDbg also supports the use of debugger convenience registers .r0 - .r7 .
These registers are available so that the user may store expression results
for later access. They are commonly used with the D[ump] command.

A <location_expr> is a combination of a <C_expr> and a <line_expr>. If
<location_expr> is specified, the program will run until <location_expr> is
reached. A number in <location_expr> is interpreted as a line number,
unless preceded by an @ (“at” sign). Then, the number will be interpreted
as an absolute location.

If a function name is alone in a location expression, and there is source
level information about the function, the location specified will be the first
source line of the function. If a location is required at the first instruction
of the function, an absolute location must be provided. The absolute
location may be determined with the print command. (i.e. print
<function_name>).

If a function name is alone in a location expression and there is no source
level information for the function, the location will be the first instruction
of the function.

Location expressions are used by the B[reak], G[o] and Dil[ist] commands.

For example, the following command would be used to break at the
absolute location 0xce042:

SrcDbg: break @0xce042

This command would be used to execute the program until line 112 in the
current file:

SrcDbg: go 112

This command would be used to Dil[ist] starting at the location
printer+0x16:

SrcDbg: dilist printer + 0x16

Location Expressions

Overview of SrcDbg
Chapter 6

6-15

The S[tep], N[ext], L[ist], T[race], Dil[ist], Gostop and D[ump] commands
each may be executed repeatedly by subsequent <returns>. This is
indicated by the command name included as part of each subsequent
prompt. For example:

SrcDbg(STEP):

When the Fo[rk], D[ump], Fi[nd], Re[ad], C[hange], Di[sasm], Dil[ist],
Sy[mbol] or P[rint] command is executed with no arguments, the last
command line respectively is repeated. For example, if the following
Fo[rk] command is executed:

SrcDbg: fork where where.c /h0/usr/walden

Each subsequent Fo[rk] command that does not specify any command
arguments would then execute the above command line.

All commands may be sequentially executed on the same command line by
using semicolons to separate the individual commands from each other.
For example:

SrcDbg: break read_dir_stuff; go; step; step; step

All commands may be aborted using the keyboard interrupt signal
(control-C) or the keyboard quit signal (control-E).

If a command begins with a * (star), the line will be interpreted as a
comment. This may be useful to add comments to SrcDbg.init files, L[o]g
files, or any other command files.

The following program will be used throughout this manual in examples to
show the use of commands. This program may be copied and compiled on
your own system. Its function is to search specified directories for
specified files.

where.c
 1 #include <stdio.h>
 2 #include <modes.h>
 3 #include <errno.h>
 4 #define BUFSIZE 512
 5
 6 typedef enum {
 7 FALSE,
 8 TRUE
 9 } boolean;
 10
 11 void main(argc,argv), check_args(argc),
 12 fork_dir(argv,pathlist,pid,pipe,stout),
 13 read_dir_stuff(filename,pid,pipe,stout),

Command Line Notes

Example Tutorial Program

Overview of SrcDbg
Chapter 6

6-16

 14 sighand(), kill_dir(pid);
 15 boolean print_args(argv);
 16 char inbuf[BUFSIZE];
 17 boolean sigflag = FALSE;
 18
 19 void main(argc,argv)
 20 register int argc;
 21 char *argv[];
 22 {
 23 register char *filename = argv[1];
 24 auto int pid,pipe,stout;
 25
 26 check_args(argc);
 27 fork_dir(argv,argv[2],&pid,&pipe,&stout);
 28 read_dir_stuff(filename,pid,pipe,stout);
 29 }
 30
 31
 32 void check_args(argc)
 33 register int argc;
 34 {
 35 if(argc < 2) exit(_errmsg(0,“where <filename> [<<pathlist>]\n”));
 36 }
 37
 38
 39 void fork_dir(argv,pathlist,pid,pipe,stout)
 40 register char **argv,
 41 *pathlist;
 42 register int *pid,
 43 *pipe,
 44 *stout;
 45 {
 46 register int stin;
 47 extern int os9fork(), os9exec();
 48 extern char **environ;
 49
 50 /* initialize argv list for dir */
 51 argv[0] = “dir”;
 52 argv[1] = “–rasu”;
 53 argv[2] = pathlist;
 54 argv[3] = NULL;
 55
 56 /* dup standard out “save it” and close standard out */
 57 *stout = dup(1);
 58 close(1);
 59
 60 /* open /pipe – now standard out – dir will write to pipe */
 61 if((*pipe = open(“/pipe”,(S_IWRITE | S_IREAD))) == –1)
 62 exit(_errmsg(errno,“can’t open pipe – ”));
 63
 64 /* fork dir with extra stack */
 65 if((*pid = os9exec(os9fork,*argv,argv,environ,10240,0,0)) == –1)
 66 exit(_errmsg(errno,“can’t fork dir – ”));
 67 }

Overview of SrcDbg
Chapter 6

6-17

 68
 69
 70 void read_dir_stuff(filename,pid,pipe,stout)
 71 register char *filename;
 72 register int pid,pipe,stout;
 73 {
 74 register char *buf = inbuf,*str,*p;
 75
 76 /* install intercept */
 77 intercept(sighand);
 78
 79 /* close stdin, dup open /pipe, close stdout, dup old stdout */
 80 close(0);
 81 dup(pipe);
 82 close(1);
 83 dup(stout);
 84
 85 /* we will read the pipe (dir’s output) */
 86 while(gets(buf)) {
 87 if(str = (char *)rindex(buf,’/’)) {
 88 *str = ’\0’;
 89 p = str + 1;
 90 } else p = buf;
 91 if(!strcmp(p,filename)) puts(buf);
 92 if(sigflag) break;
 93 }
 94 if(sigflag) kill_dir(pid);
 95 }
 96
 97 void sighand()
 98 {
 99 sigflag = TRUE;
100 }
101
102 void kill_dir(pid)
103 register int pid;
104 {
105 if(setuid(0) == –1) exit(_errmsg(errno,“could not do setuid –
”));
106 if(kill(pid,2) == –1) exit(_errmsg(errno,“could not signal – ”));
107 }
108
109 #ifdef DEBUG
110 boolean print_args(argv)
111 register char **argv;
112 {
113 register int i = 0;
114
115 while(*argv) fprintf(stderr,“%d: %s\n”,++i,*argv++);
116 return i >= 2;
117 }
118 #endif

Overview of SrcDbg
Chapter 6

6-18

Notes

Chapter

7

7-1

Debugger Control Commands

The commands described in this chapter control the execution of SrcDbg.
They provide the following functions:

Command: Description:

Fo[rk] starts a program from within SrcDbg

G[o] executes the program until a breakpoint occurs or the program
stops

S[tep] executes one statement at a time

N[ext]
S[tep]

executes one statement at a time. N[ext] does not, however,
step through functions. Instead it executes at full speed until
the function returns.

R[eturn] executes the program until returning to the calling function

B[reak] sets breakpoints in the program

W[atch] specifies program objects to be monitored during execution of
the program

K[ill] removes breakpoints and watch expressions in the program

L[o]g writes SrcDbg commands to the specified pathlist

O[ption] allows the user to change certain SrcDbg options

Re[ad] reads SrcDbg commands from the specified pathlist

Debugger Control Commands
Chapter 7

7-2

Start Program

Syntax

fo[rk] <program> [<program_opts>] [[“]<redirection>[”]]

Usage

Fo[rk] begins execution of the specified program. Once forked, the debug
process’ program counter will be pointing to the primary module’s
execution entry point (usually at _cstart). Any <program_opts> appearing
on the Fo[rk] command line will be passed to the program as parameters. If
there are no arguments specified, Fo[rk] re- starts the program with the
same arguments used by either the last Fo[rk] command or the SrcDbg
command line.

<redirection> modifiers may also be specified on the Fo[rk] command
line. This allows lengthy I/O to go to or originate from a file or device
other than your terminal. If the redirected paths are given within quotes,
only the standard paths of the program being debugged are affected.
For example:

SrcDbg: fork where where.c /h0 “>>>foundit”

If the redirected paths are specified without quotes, the standard paths of
SrcDbg and the program being debugged are redirected. For example:

SrcDbg: fork where where.c /h0 <>>>/nil

This type of redirection affects all consequent Shell commands executed
from SrcDbg. In the above example, it is consequently impossible to fork a
Shell from SrcDbg.

The Fo[rk] command may be given at anytime. This effectively ends the
current debugging session and begins a new session.

Examples

Each of the following three examples accomplish the same result: forking
the program where; passing two parameters to where (“where.c” and
“/h0/usr/kathie”); executing the G[o] command to run where
to completion.

Fork

Debugger Control Commands
Chapter 7

7-3

In the first example, the program where is forked from the SrcDbg
command line with no parameters. The G[o] command is given to run
where to completion.

$ SrcDbg where where.c /h0/usr/kathie “where” forked with 2 parameters
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go execute where (g command)
/h0/usr/kathie/SEA

/h0/usr/kathie/SOURCE

“where” exited normally

where is now re- forked with the Fo[rk] command. The two parameters
(“where.c ” and “/h0/usr/kathie”) are passed to where as command line
arguments.

SrcDbg: fork where where.c /h0/usr/kathie re–fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg:go

/h0/usr/kathie/SEA

/h0/usr/kathie/SOURCE “where” output
“where” exited normally

where is now re- forked with the Fo[rk] command. Because no parameters
are specified, the most recent Fo[rk] command line is used by default
(“fork where where.c /h0/usr/kathie”).

SrcDbg: fo re–fork “where” with last arguments used
Forked: “where”

Context: where_cstart

SrcDbg:go

/h0/usr/kathie/SEA

/h0/usr/kathie/SOURCE “where” output
“where” exited normally

Debugger Control Commands
Chapter 7

7-4

Program Execution

Syntax

g[o] [<location_expr>] [:dis[play]]

Usage

G[o] executes the program starting at the current location. G[o] executes
the program until:

 a breakpoint is encountered

 an exception occurs

 a signal occurs, e.g. keyboard interrupt ([Ctrl-C]), keyboard abort
([Ctrl-E]), etc.

 the end of the program is reached

If “:dis[play]” is specified, SrcDbg displays each source line to be
executed.

Important: If watch expressions have been set, SrcDbg will evaluate each
watch expression and display its value if it changes after executing each C
statement. For example:

SrcDbg: go

w1: argc

2

Important: Using Watch expressions or Break when expressions while
executing a program with the G[o] command will slow execution speed.

Go

Debugger Control Commands
Chapter 7

7-5

Examples

In the following example, where is forked with two parameters. These are
passed to where as command line arguments. The G[o] command is then
given to run where to completion.

$ SrcDbg where where.c /h0/usr/kathie fork where
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go execute where (g command)
/h0/usr/kathie/SEA “where” output
/h0/usr/kathie/SOURCE

“where” exited normally

where is re- forked and a breakpoint is set at line 37 using the B[reak]
command. The G[o] command is then given with the “:dis” option. Once
the breakpoint is reached, argv[0] is specified as a watch expression. The
G[o] command is executed again and where runs to completion displaying
the changing values of argv[0]:

SrcDbg: fork where /h0/usr/kathie re–fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go main execute to main
File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg: break 39 set breakpoint at line 39
b1: where\where.c\39 :count 1

SrcDbg: go :dis execute in display mode until breakpoint

 23: register char *filename = argv[1];

 ^

 26: check_args(argc);

 ^

 32: void check_args(argc)

 ^

 35: if(argc < 2) exit(_errmsg(0,“where <filename> [<pathlist>]\n”));

 ^

 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);

 ^

At breakpoint #1 breakpoint at line 39 encountered
File: “where.c”

Debugger Control Commands
Chapter 7

7-6

Context: where\fork_dir

 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

SrcDbg: watch argv[0]

w1: argv[0]

SrcDbg: go

Watch Expression #1: argv[0]

0x30940 = “where” watch expression’s initial value
File: “where.c” watch location display
Context: where\fork_dir

 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

dn: FFFFFFA8 00000000 00000002 00000003 0003085C 00030858 00001980 00000000

an: 00030948 00000000 00030948 00000000 00030860 00030844 00037000 00030820

pc: E6A9E cc: 08 (–N–––)

fork_dir+0x1e >6100FE32 bsr.w _stkchec

Watch Expression #1: argv[0]

0xe6c7f = “dir” watch expression changes and shows instruction
File: “where.c” immediately following the one that changed it
Context: where\fork_dir\$blk0

 52: argv[1] = “–rasu”; (there is no assembly level display since
 ^ instruction is exactly on a source line)
“where” exited normally

Debugger Control Commands
Chapter 7

7-7

Single Line Execution

Syntax

s[tep] [<number>]

Usage

S[tep] executes the specified number of executable statements of the
program. If no number is specified, S[tep] executes a single statement.
SrcDbg executes a statement, displays the values of any watch expressions
that have changed and displays the next executable line. SrcDbg then
displays the following prompt:

SrcDbg(STEP):

To continue “stepping” through a program, <return> may be used as well
as re- entering the S[tep] command. If a number was previously specified,
it remains in effect until a S[tep] command with a different number (or no
number) is executed.

If a function is encountered while stepping through a program, the function
is also stepped through. To avoid stepping through functions, use the
N[ext] command.

Important: The exception to this is a function that was not compiled with
the program. For example, any of the OS- 9 standard C library functions.
These types of functions will be executed and stepped over with a single
S[tep] command.

If a breakpoint is encountered while stepping through a program, execution
stops in the same manner as when using the G[o] command.

Step

Debugger Control Commands
Chapter 7

7-8

Examples

In the following example, where is forked from the SrcDbg command line
with two parameters. These are passed to where as command line
arguments. The S[tep] command is given to execute the first statement.
The S[tep] command is repeated in order to show its use.

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: step

File: “where.c”

 19: void main(argc,argv)

 ^

SrcDbg: step

 23: register char *filename = argv[1];

 ^

SrcDbg(STEP):s function “check_args()” encountered
 26: check_args(argc);

 ^

SrcDbg(STEP): step 3 step 3 times
 32: void check_args(argc)

 ^

 35: if(argc < 2) exit(_errmsg(0,“where <filename> [<path>]\n”));

 ^

 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);

 ^

SrcDbg(STEP): <return> step 3 times again
 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

 51: argv[0] = “dir”;

 ^

 52: argv[1] = “–rasu”;

 ^

SrcDbg(STEP):

Debugger Control Commands
Chapter 7

7-9

Single Line Execution/Execute Function and Return

Syntax

n[ext] [<number>]

Usage

N[ext] executes the specified number of executable statements of the
program. If a number is not specified, SrcDbg executes one statement.
SrcDbg executes a statement, displays the value of any watch expressions
that have changed and displays the next executable line. SrcDbg then
displays the following prompt:

 SrcDbg(NEXT):

To continue “nexting” through the program, hit [CR] or re- enter the
N[ext] command.

If a <number> is specified, it remains in effect until a N[ext] command
with a different number (or no number) is executed.

The N[ext] command has the same function as the S[tep] command with
one exception: if a function is encountered while “nexting” through a
program, the function is executed without stepping through it. To step
through functions, use the S[tep] command.

Important: The N[ext] command will execute a function and all functions
called by that function and then display the next executable line of the
program. This includes functions recursively calling themselves.

If a breakpoint is encountered while “nexting” through a program,
execution stops in the same manner as when using the G[o] command.
Execution will stop even if the breakpoint is within a function.

Name

Debugger Control Commands
Chapter 7

7-10

Examples

In the following example, where is forked with two parameters. These are
passed to where as command line arguments. The N[ext] command is
given to execute the first statement. This command is repeated to show its
use. Notice the difference in function handling between the S[tep]
command and the example below.

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go main execute to main
File: “where.c”

 19: void main(argc,argv)

 ^

SrcDbg: next

 23: register char *filename = argv[1];

 ^

SrcDbg(NEXT):n function “check_args()” encountered
 26: check_args(argc);

 ^

SrcDbg(NEXT): next 3 next 3 functions without stepping
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);

 ^

 28 read_dir_stuff(filename,pid,pipe,stout);

 ^

/h0/usr/kathie/SEA where output
/h0/usr/kathie/SOURCE

“where” exited normally

Debugger Control Commands
Chapter 7

7-11

Execute Until Function Returns

Syntax

r[eturn] <number>

Usage

R[eturn] executes the program until the current function returns to the
calling function or a breakpoint is encountered. If <number> is specified,
R[eturn] executes until it returns to the specified <number> of callers
above the current stack frame.

To find out the number of callers in the current stack frame, the Fr[ame]
command is used. If more callers are specified than exist, an error is
returned and the R[eturn] command is not executed:

Error: Bad frame number

Important: If the frame to “return” to has no source, SrcDbg will run until
the first source line is encountered. This is usually in a higher frame.

Return

Debugger Control Commands
Chapter 7

7-12

Examples

In the following example, where is forked with two parameters. These are
passed to where as command line arguments. A breakpoint is set at the
function “fork_dir” using the B[reak] command. The G[o] command runs
where until “fork_dir” is reached. The S[tep] command is used to step
through a few lines of fork_dir(). The R[eturn] command is then used to
return from fork_dir(). The R[eturn] command is used again to return from
main().

$ SrcDbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: break fork_dir set breakpoint at fork_dir()
SrcDbg: break fork_dir

b1: where\fork_dir+0x18 :count 1

SrcDbg:go execute until fork_dir() encountered
At breakpoint #1 breakpoint at fork_dir() encountered
File: “where.c”

Context: where.c\fork_dir

 39: void fork_dir(argv,argv[2],&pid,&pipe,&stout);

 ^

SrcDbg: step step into fork_dir()
 51: argv[0] = “dir”;

 ^

SrcDbg(STEP): step

 52: argv[1] = “–rasu”;

 ^

SrcDbg(STEP): <return> execute until return from
 30 read_dir_stuff(filename,pid,pipe,stout); fork_dir()
 ^

SrcDbg:r execute until return from main()
/h0/usr/kathie/SEA

/h0/usr/kathie/SOURCE (main returns to _cstart, which has no source,
“where” exited normally so the program runs to completion.)

Debugger Control Commands
Chapter 7

7-13

Set Breakpoint

Syntax

b[reak] [<location_expr>] [:wh[en] <C_expr>] [:co[unt] <num>]

Usage

Breakpoints are generally used to stop execution in a program to allow
single- line- stepping through specific areas.

B[reak] sets a breakpoint at a specified line number, result of a <C_expr>
or upon a when <C_expr> becoming true.

The following chart outlines the possible configurations of the B[reak]
command. x indicates that the corresponding B[reak] command line option
is being used.

Location expr: When expr: Count (n)” Result:

o o o Displays established breakpoints

o o x Error

o x o Break when when_expr is true

x o o Break at location_expr

o x x Break when when_expr is true the nth time

x o x Break at location_expr then nth time

x x o Break at location_expr when when_expr is true

x x x Break at location_expr when when_expr is true the nth time

When a breakpoint is encountered, SrcDbg prints the breakpoint number,
the current program scope and the next line (containing the breakpoint).

Up to 16 breakpoints may be set at one time. However, SrcDbg sets and
removes breakpoints in the execution of R[eturn], N[ext], Gostop, G[o]
and P[rint] (when printing functions). If sixteen breakpoints are set by the
user, SrcDbg will be unable to execute these commands until a breakpoint
is removed. To remove a breakpoint, the K[ill] command is used.

If no arguments are specified with the B[reak] command, all current
breakpoints in the program are displayed.

If <num> is not specified with the count option, count defaults to 1.

Break

Debugger Control Commands
Chapter 7

7-14

Each time a breakpoint is specified, SrcDbg checks to see if a breakpoint
has already been set at that location. If a B[reak] command specifies a
breakpoint at a non- executable line number, SrcDbg places the breakpoint
at the closest executable line following the specified line number. If a line
number is specified greater than the last executable line, an error is
returned.

The following command line causes the debugger to stop at ’func’ the third
time ’arg_to_func’ is equal to 10:

break func :when arg_to_func == 10 :count 3

The debugger will stop at ’func’ and evaluate the expression. If the
expression is true (non 0) and the count is 1, SrcDbg will stop. If the
expression is true and the count is not 1, the count is decremented and
SrcDbg will continue. If the expression is not true, SrcDbg will continue
without decrementing count.

When count reaches 1, SrcDbg will stop each time the breakpoint is
reached and will no longer decrement count.

A break point comprised of a when expression without a break expression
will cause SrcDbg to execute slowly. When SrcDbg encounters the
breakpoint, the when expression is true. If the G[o] command is executed
next, SrcDbg will generally stop on the next instruction since the when
expression will still be evaluated as true.

Examples

The following example shows how B[reak] may be used to set several
types of breakpoints in the program where:

SrcDbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: b fork_dir set breakpoint at fork_dir
b1: where\fork_dir+0x10 :count 1

SrcDbg: g execute “where”
At breakpoint #1 stop at breakpoint
File: “where.c”

Context: where\fork_dir

 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

SrcDbg: chc read_dir_stuff\$blk0 change context
SrcDbg: b 91 :when *p == ’s’ set breakpoint at line 91
b2: where\where.c\91 :when *p == ’s’ :count 1 when p points to ’s’

Debugger Control Commands
Chapter 7

7-15

SrcDbg: g execute “where”
At breakpoint #2 stop at breakpoint 2
File: “where.c”

Context: where\read_dir_stuff\$blk0\$blk1

 91: if(!strcmp(p,filename)) puts(buf);

 ^

SrcDbg: print p display p
0x48036 = “scope_expr.bnf”

SrcDbg: kill b2 remove breakpoint 2
SrcDbg: break 87 :count 100 set breakpoint at line 87 the 100th time
b2: where\where.c\87 :count 100

SrcDbg: g execute “where”
/h0/usr/kathie/SEA

/h0/usr/kathie/SOURCE

At breakpoint #2 stop at breakpoint 2
File: “where.c”

Context: where\read_dir_stuff\$blk0\$blk1

 87: if(str = (char *)rindex(buf,’/’)) {

 ^

SrcDbg: kill b2 remove breakpoint 2
SrcDbg: break :when .cc & 1 break when carry bit is set
b2: :when .cc & 1 :count 1

SrcDbg: break display breakpoints
Breakpoint: Condition: Count:

–––

 1 where\fork_dir+0x10 1

 2 .cc & 1 1

SrcDbg: go execute “where”
At breakpoint #2 stop at breakpoint 2
File: “where.c”

Context: where\rindex note extended display
 28: read_dir_stuff(filename,pid,pipe,stout);

 ^

dn: 0004801E 0000002F 0004821E 000492C0 0000002F 00000001 00000003 00000000

an: 002225B0 003EE29A 0004801F 0004801E 00048036 00049178 00050000 00049138

pc: 22297E cc: 09 (–N––C)

<68881 in Null state>

rindex+0xc >6602 bne.b rindex+0x10–>

SrcDbg:

Debugger Control Commands
Chapter 7

7-16

Set Watch Expression

Syntax

w[atch] [<C_expr>]

Usage

W[atch] monitors the value of specified <C_expr> as the program is
executed. Each watch expression is evaluated each time a machine
instruction is executed. The watch expression will be displayed with its
initial value when it is first set. SrcDbg will then display each watch
expression only when its value changes:

SrcDbg: go

w1: argv[0]

0x23e577 = “dir”

Two modes of W[atch] output are available with the O[ption] command.
By default, SrcDbg will show the location of each watch expression
change. The location displayed when a watch expression changes equates
to the machine instruction after the change.

The o[ption] watch may be used to suppress the location display when a
watch expression changes.

SrcDbg evaluates each expression being monitored after each machine
instruction is executed. Consequently, using watch expressions while
executing a program with the G[o] command will slow execution speed.

Up to 16 expressions may be monitored at any given time.

Important: SrcDbg is unable to monitor arrays, structs or unions. SrcDbg
can only monitor the individual elements.

Watch

Debugger Control Commands
Chapter 7

7-17

Examples

In the following example, where is forked with two parameters. These are
passed to where as command line arguments. A breakpoints is set at
fork_dir. where is run to fork_dir using the G[o] command. A watch
expression is set and a W[atch] command with no parameters is then
executed to verify the watch expression. The G[o] command runs where to
completion. Note each time the watch expression changes:

$ SrcDbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: step
File: “where.c”
 19: void main(argc,argv)
 ^
SrcDbg(STEP): break fork_dir set breakpoint
b1: where\fork_dir+0x18 :count 1
SrcDbg: go
At breakpoint #1 stop at breakpoint
File: “where.c”
Context: where\fork_dir
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 ^
SrcDbg: watch fork_dir\argv[0] set watch expression

w1: fork_dir\argv[0]
SrcDbg: watch display watch expression

Watch Expression:
––––––––––––––––––––
 1 fork_dir\argv[0]
SrcDbg: go
Watch Expression #1: fork_dir\argv[0] watch expression’s initial value
0x2f94c = “where” watch location display
File: “where.c”
Context: where\fork_dir
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 ^
dn: FFFFFFA8 0002F890 00000003 00000003 0002F860 0002F85C 00001990 00000000
an: 0002F954 00000000 0002F954 0002F890 0002F864 0002F848 00036000 0002F824
pc: E6A9E cc: 08 (–N–––)
fork_dir+0x1e >6100FE32 bsr.w _stkchec
Watch Expression #1: fork_dir\argv[0] watch expression changes
0xe6c7f = “dir”
File: “where.c”
Context: where\fork_dir\$blk0 (there is no assembly level display since
 52: argv[1] = “–rasu”; instruction is exactly on a source line)
 ^
/h0/usr/kathie/SEA where output
/h0/usr/kathie/SOURCE
“where” exited normally

Debugger Control Commands
Chapter 7

7-18

This example is identical to the previous example except that the O[ption]
watch command is used:

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: o watch turn off watch location display
SrcDbg: step

File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg(STEP): break fork_dir set breakpoint
b1: where\fork_dir+0x18 :count 1

SrcDbg: go

At breakpoint #1 stop at breakpoint
File: “where.c”

Context: where\fork_dir

 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

SrcDbg: watch fork_dir\argv[0] set watch expression
w1: fork_dir\argv[0]

SrcDbg: watch display watch expression
Watch Expression:

––––––––––––––––––––

 1 fork_dir\argv[0]

SrcDbg: go

Watch Expression #1: fork_dir\argv[0] watch expression changes
0x2994c = “where”

Watch Expression #1: fork_dir\argv[0] watch expression changes
0x13bc7f = “dir”

/h0/usr/kathie/SEA “where” output
/h0/usr/kathie/SOURCE

“where” exited normally

SrcDbg:

Debugger Control Commands
Chapter 7

7-19

Remove Breakpoint/Watch Expression

Syntax

k[ill] [<breakpoint>] {[,<breakpoint>] [,<watch_expression>]

k[ill] [<watch_expression>] {[,<breakpoint>] [,<watch_expression>]

Usage

K[ill] removes all specified <breakpoints> and <watch_expressions>.
SrcDbg notation (i.e. b1, b2, w1, w2, etc.) is used to specify <breakpoints>
and <watch_expressions>. For example:

kill b1, w1

When K[ill] is executed with no arguments, the following prompt is issued:

Kill all breakpoints and watch expressions? (y or n)

To remove all set breakpoints and watch expressions answer with a “y”.
The same result may be accomplished with a wildcard:

SrcDbg: kill *

Wildcards may also be used to remove specifically only breakpoints or
watch expressions in the following manner:

 SrcDbg kill b*

 SrcDbg kill w*

Kill

Debugger Control Commands
Chapter 7

7-20

Examples

In the following example, where is forked with two parameters. These are
passed to where as command line arguments. Three breakpoints are set. A
B[reak] command is executed with no parameters to verify the breakpoints.
Two breakpoints are removed with the K[ill] command. A B[reak]
command without parameters displays the remaining breakpoint. Two
watch expressions are set and displayed with the W[atch] command. All
breakpoints and watch expressions are removed with the K[ill] command.
Then, the B[reak] and W[atch] commands are entered without parameters
to verify that all breakpoints and watch expressions have been removed.

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: b where\where.c\35;b 91 :when *read_dir_stuff\$blk0\p == ’s’ set 2
b1: where\where.c\35 :count 1 breakpoints
b2: where\where.c\91 :when *read_dir_stuff\$blk0\p == ’s’ :count 1
SrcDbg: break .pc+0x100 set another breakpoint
b3: where\fork_dir+0x70 :count 1
SrcDbg: break display all breakpoints
Breakpoint: Condition: Count:
––
 1 where\where.c\35 1
 2 where\where.c\91 *read_dir_stuff\$blk0\p == ’s’ 1
 3 where\fork_dir+0x70 1
SrcDbg: kill b1,b3 remove breakpoints 1 and 3
SrcDbg: break display all breakpoints
Breakpoint: Condition: Count:
–––
 2 where\where.c\91 *read_dir_stuff\$blk0\p == ’s’ 1
SrcDbg: watch *read_dir_stuff\$blk0\p set watch expression
w1: *read_dir_stuff\$blk0\p
SrcDbg: watch inbuf[10] set another watch expression
w2: inbuf[10]
SrcDbg: watch display all watch expressions
Watch Expression:
––––––––––––––––––––
 1 *read_dir_stuff\$blk0\p
 2 inbuf[10]
SrcDbg: kill * remove all breakpoints and watch expressions
SrcDbg: break;watch display all breakpoints and watch expressions
no break points
no watch expressions
SrcDbg:

Debugger Control Commands
Chapter 7

7-21

Write Commands to Logfile

Syntax
l[o]g <pathlist>
l[o]g : off

Usage

L[o]g writes SrcDbg commands to <pathlist>. The specified pathlist is
relative to the user’s current data directory. If “: off” is entered, the log file
is closed.

The command file created by L[o]g may be read by the Re[ad] command.

Examples

In the following example, SrcDbg is forked with two parameters. The
L[o]g command is used to open the file buglog and the subsequent
commands are recorded in buglog . Then, the file is closed.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: log /h0/usr/kathie/buglog create logfile “buglog”
SrcDbg: step command added to “buglog”
File: “where.c”
 19: void main(argc,argv)
 ^
SrcDbg(STEP): go fork_dir command added to “buglog”
File: “where.c”
Context: where\fork_dir
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 ^
SrcDbg: watch fork_dir\argv[0] command added to “buglog”
w1: fork_dir\argv[0]
SrcDbg: step command added to “buglog”
Watch Expression #1: fork_dir\argv[0]
0x2f94c = “where”
File: “where.c”
Context: where\fork_dir
 39: void fork_dir(argv,pathlist,pid,pipe,stout) ^
dn: FFFFFFA8 0002F890 00000003 00000003 0002F860 0002F85C 00001990 00000000
an: 0002F954 00000000 0002F954 0002F890 0002F864 0002F848 00036000 0002F824
pc: E6A9E cc: 08 (–N–––)
fork_dir+0x1e >6100FE32 bsr.w _stkchec
 51: argv[0] = “dir”;
 ^
SrcDbg(STEP): log : off “buglog” closed
SrcDbg: list buglog display the file “buglog”
 1: step (this file may now be used with the re[ad] command)
 2: go fork_dir
 3: watch fork_dir\argv[0]
 4: step
[End of file]

Log

Debugger Control Commands
Chapter 7

7-22

Toggle Options

Syntax

o[ption] {<options>}

Usage

O[ption] allows the user to set a variety of display and execution options.
The following options are currently available:

Option: Default action (toggle action in parentheses):

fpu Show (don’t show) floating point coprocessor registers

fregs Display floating point coprocessor registers in decimal (hexadecimal)

dbg Read (don’t read) “.dbg” symbols

stb Read (don’t read) “.stb” symbols

prompt Show (don’t show) prompt

echo Don’t echo (echo) command line output

rom Show RAM hard (ROM soft) breakpoints

source Show (don’t show) source line with assembly locations

watch Show (don’t show) location of watch expression change

Option

Debugger Control Commands
Chapter 7

7-23

Examples

In the following example, SrcDbg is forked with two parameters and the
O[ption] command is used to display the list of additional SrcDbg options.
Then, the O[ption] command is used to set three options and the new status
of the options is listed.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: option display current option settings
Options:

 READ “dbg” symbols.

 READ “stb” symbols.

 SHOW floating point coprocessor registers.

 DECIMAL floating point coprocessor registers.

 SHOW location with watch expression changes.

 RAM (HARD) breakpoints.

 SHOW source with assembly level locations.

 NO ECHO

 PROMPT

SrcDbg: option fpu toggle option “fpu”
SrcDbg: o fregs toggle option “fregs”
SrcDbg: o dbg toggle option “dbg”
SrcDbg: option display current options
Options:

 DON’T READ “dbg” symbols.

 READ “stb” symbols.

 DON’T SHOW floating point coprocessor registers.

 HEXADECIMAL floating point coprocessor registers.

 SHOW location with watch expression changes.

 RAM (HARD) breakpoints.

 SHOW source with assembly level locations.

 NO ECHO

 PROMPT

SrcDbg:

Debugger Control Commands
Chapter 7

7-24

Read Commands From a File

Syntax

re[ad] [<pathlist>]

Usage

Re[ad] reads SrcDbg commands from <pathlist>. The <pathlist> is
relative to the user’s current data directory. The L[o]g command may be
used to create the file referred to in <pathlist>.

Examples

In the following example, SrcDbg is forked with two parameters and the
S[tep] command is used to move the execution pointer to main. Then, the
Re[ad] command is used to read the commands from the file buglog. The
1.SrcDbg: prompt signifies that the command interpreter has been
re- entered to interpret commands.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: read /h0/usr/kathie/buglog read commands from file “buglog”
1.SrcDbg: step

File: “where.c”

 19: void main(argc,argv)

 ^

1.SrcDbg(STEP): go fork_dir

File: “where.c”

Context: where\fork_dir

 39: void fork_dir(argv,pathlist,pid,pipe,stout)

 ^

1.SrcDbg: watch fork_dir\argv[0]

w1: fork_dir\argv[0]

1.SrcDbg: step

 51: argv[0] = “dir”;

 ^

1.SrcDbg(STEP): quit

SrcDbg:

Read

Chapter

8

8-1

Data Manipulation Commands

The commands described in this chapter control provide and manipulate
program information for the user. They provide the following functions:

Command: Description:

L[ist] displays source listings of files

I[nfo] returns information about a specified program object or your
current location within the program

Fr[ame] changes logical stack frame or displays stack frame information

P[rint] prints the value of a specified C expression

A[ssign] sets the value of a program object

C[h]c changes the context for default name and location resolution

Con[text] fully qualifies a symbol in terms of scope

Fi[nd] displays all scope expressions found for <name>

Lo[cals] displays the values of all local symbols

Data Manipulation Commands
Chapter 8

8-2

Display Source Code Listing

l[ist] <list_arg> [,<list_arg>]

L[ist] with no parameters displays the next 21 lines of source code
beginning with the current line number. If the end of file occurs before 21
lines are displayed, an end-of-file message is displayed.

<list_arg> may be any of the following:

 Any OS-9 pathlist
 Any source file known to SrcDbg
 A scope expression resulting in a block number
 A scope expression resulting in a function
 A line number expression

If a <list_arg> is specified, L[ist] will then begin displaying source code at
the beginning of the specified file or file section. L[ist] will display 21
lines of code even if the function or block is less than 21 lines (unless
end-of-file is reached).

Two special cases exist for <list_args>. If the <list_arg> results in a line
number, it may optionally be followed by a second line number. The
source listing will begin at the first line number and end at the second.
For example:

SrcDbg: list 1 2

 1: #include <stdio.h>

 2: #include <modes.h>

Specifying a beginning and ending line number allows the user to display
as few or as many lines as personally desired. If a second line number is
not specified, the default 21 line listing begins at the specified line number.

<list_args> may be separated by a comma on the L[ist] command line in
order to display more than one portion of a file. For example:

SrcDbg: list 1 2, 19 20

 1: #include <stdio.h>

 2: #include <modes.h>

 19: void main(argc,argv)

 20: register int argc;

List

Data Manipulation Commands
Chapter 8

8-3

Examples

The following examples show various ways of using the L[ist] command.
These examples assume the program where is being debugged:

SrcDbg: list list from current position
 19: void main(argc,argv)
 20: register int argc;
 21: char *argv[];
 22: {
 23: register char *filename = argv[1];
 24: auto int pid,pipe,stout;
 25:
 26: check_args(argc);
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);
 28: read_dir_stuff(filename,pid,pipe,stout);
 29: }
 30:
 31: void check_args(argc)
 32: register int argc;
 33: {
 34: if(argc < 2) exit(_errmsg(0,“where <filename>
 [<pathlist>]\n”));
 35: }
 36:
 37: void fork_dir(argv,pathlist,pid,pipe,stout)
 38: register char **argv,
 39: *pathlist;
SrcDbg(LIST): list 1 5 list line 1 through 5
 1: #include <stdio.h>
 2: #include <modes.h>
 3: #include <errno.h>
 4: #define BUFSIZE 512
 5:
SrcDbg(LIST): list /h0/defs/errno.h list an OS-9 file
 1: /* System call error numbers.
 2: * May be found in ’errno’ after an error has occurred.
 3: *
 4: * These should be obtained from sys.l somehow.
 5: *
 6: */
 7:
 8: #define E_ILLFNC 0x40 /* (usually) Trap Error Codes */
 9: #define E_FMTERR 0x41 /* illegal function code */
 10: #define E_NOTNUM 0x42 /* number not found/not a number */
 11: #define E_ILLARG 0x43 /* illegal argument */
 12:
 13: #define E_BUSERR 0x66 /* bus error TRAP 2 occurred */
 14: #define E_ADRERR 0x67 /* address error TRAP 3 occurred */
 15: #define E_ILLINS 0x68 /* illegal instruction TRAP 4 occur */
 16: #define E_ZERDIV 0x69 /* zero divide TRAP 5 occurred */
 17: #define E_CHK 0x6a /* CHK instruction TRAP 6 occurred */
 18: #define E_TRAPV 0x6b /* TrapV instruction TRAP 7 occurred */
 19: #define E_VIOLAT 0x6c /* privilege violation TRAP 8 occur */
 20: #define E_TRACE 0x6d /* Uninitialized Trace TRAP 9 occur */
 21: #define E_1010 0x6e /* Uninitialized 1010 TRAP 10 occur */

Data Manipulation Commands
Chapter 8

8-4

SrcDbg(LIST): list where.c\main\$blk0 list a specific block
 23: register char *filename = argv[1];
 24: auto int pid,pipe,stout;
 25:
 26: check_args(argc);
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);
 28: read_dir_stuff(filename,pid,pipe,stout);
 29: }
 30:
 31: void check_args(argc)
 32: register int argc;
 33: {
 34: if(argc < 2) exit(_errmsg(0,“where <filename>
 [<pathlist>]\n”));
 35: }
 36:
 37: void fork_dir(argv,pathlist,pid,pipe,stout)
 38: register char **argv,
 39: *pathlist;
 40: register int *pid,
 41: *pipe,
 42: *stout;
 43: {
SrcDbg(LIST): list check_args list a specific function
 32: void check_args(argc)
 33: register int argc;
 34: {
 35: if(argc < 2) exit(_errmsg(0,“where <filename>
 [<pathlist>]\n”));
 36: }
 37:
 38:
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 40: register char **argv,
 41: *pathlist;
 42: register int *pid,
 43: *pipe,
 44: *stout;
 45: {
 46: register int stin;
 47: extern int os9fork(), os9exec();
 48: extern char **environ;
 49:
 50: /* initialize argv list for dir */
 51: argv[0] = “dir”;
 52: argv[1] = “–rasu”;
SrcDbg(LIST): list 20 22,32 33 list lines 20-24 and 32-33
 20: register int argc;
 21: char *argv[];
 22: {
 32: void check_args(argc)
 33: register int argc;

Data Manipulation Commands
Chapter 8

8-5

Start Program

Syntax

i[nfo] <scope_expression>

Usage

I[nfo] returns information about specified program objects and the
current program location. When I[nfo] is given with no parameters,
SrcDbg displays the current location of the program. For example:

SrcDbg: info

File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg:

<scope_expression> specifies a program object using a scope expression.
For a detailed discussion of scope expressions, see the discussion on
command syntax in the Overview to SrcDbg chapter.

When a function is specified by the I[nfo] command, a declaration of the
function data type is displayed. Then declarations of each of the formal
parameters “expected” data types are displayed. For example:

SrcDbg: info read_dir_stuff

void read_dir_stuff(filename,pid,pipe,stout)

register char *filename;

register int pid;

register int pipe;

register int stout;

When a struct, enum or union type is specified by an I[nfo] command, all
typedef declarations using the specified type are declared. For example:

SrcDbg: info FILE

typedef struct _iobuf FILE;

Info

Data Manipulation Commands
Chapter 8

8-6

When a struct, enum or union tag is specified by an I[nfo] command, the
full declaration is displayed. For example:

SrcDbg: info struct _iobuf

struct _iobuf {

 char *_ptr;

 char *_base;

 char *_end;

 WORD _flag;

 WORD _fd;

 char _save;

 WORD _bufsiz;

 int (*_ifunc)();

 int (*_ofunc)();

};

I[nfo] also returns information on a variety of other items:

 Basic C types (includes modules, registers, etc.)
 files (includes files, source files, etc.)
 block numbers
 registers

For example:

SrcDbg: info int

C Basic Type int

SrcDbg: info where.c

Source File “where.c”

SrcDbg: info /dd/defs/modes.h

Include File “/dd/defs/modes.h”

SrcDbg: info where

Program “where”

SrcDbg: info $blk0

Compound Statement $blk0

SrcDbg: info .d0

register long .d0;

SrcDbg: info .fp0

register double .fp0;

If no information is available about a specified object, SrcDbg returns an
appropriate message. For example:

SrcDbg: info $blk21

“$blk21” not found

Data Manipulation Commands
Chapter 8

8-7

Examples

The following examples show further uses of the I[nfo] command using
the where program:

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: step step to main
File: “where.c”

 19: void main(argc,argv)

 ^

SrcDbg: info boolean return information on “boolean”
typedef enum {

 FALSE = 0,

 TRUE = 1,

} boolean;

srcdbg: info sigflag return information on “sigflag”
boolean sigflag;

SrcDbg: info .pc return information on “.pc” register
register unsigned long .pc;

Data Manipulation Commands
Chapter 8

8-8

Display Stack Frame Information

Syntax

f[rame] [[+] <number>]

Usage

F[rame] displays stack frame information. If no arguments are specified,
the name of each calling function, the location from which it was called
and the frame number are displayed. The active frame is designated with
a “*”.

If F[rame] is followed by <number>, the stack frame context will be
changed to <number>. This enables the user to access all variable values
local to the specified frame. If F[rame] is followed by a signed number, the
stack frame will be changed relative to the current frame +/– <number> .

The F[rame] command does not effect the location of the
execution pointer.

F[rame] also displays the values of each of the actual parameters passed to
the calling function with the function’s formal parameter names.

At the left of each calling function is the frame number. Frame number
zero is the current frame. Each frame is successively numbered
(1, 2, 3, etc.).

Important: If a frame for which there is no source information is
referenced or “passed through”, the following warning will be displayed:

Warning - register variables may not have correct values.

[stack frame not intact]

Frame

Data Manipulation Commands
Chapter 8

8-9

The following example forks the program where. Two parameters are
passed to the program. A breakpoint is set at the function check_args.
where is run to the breakpoint using the G[o] command. A F[rame]
command is executed to show the frame stack. Two different F[rame]
commands are executed to change the frame stack context to 1 and display
the new frame stack. A R[eturn] command is executed to return one frame.
The F[rame] command is again executed to show the result of the
previous command:

$ srcdbg where where.c /h0/usr/kathie “where” forked with 2 parameters
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: step
File: “where.c”
 19: void main(argc,argv)
 ^
SrcDbg(STEP): break check_args set breakpoint
b1: where\check_args+0xa :count 1
SrcDbg: go run to breakpoint
At breakpoint #1
File: “where.c”
Context: where.c\check_args
 32: void check_args(argc)
 ^
SrcDbg: frame show frame stack
 # Location of Call: Call:
–––
* 0: where.c\26 check_args(argc = 3)
 1: _cstart+0xe4 main(argc = 3, argv = 0x29952)
SrcDbg: frame 1 change frame stack context to 1
SrcDbg: frame show frame stack
 # Location of Call: Call:
––
 0: where.c\26 check_args(argc = 3)
* 1: _cstart+0xe4 main(argc = 3, argv = 0x29952)
SrcDbg: print argv[1] display contents of argv[1]
0x29888 = “where.c”
SrcDbg: return 1 return one frame
File: “where.c”
Context: where\main\$blk0
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);
 ^
SrcDbg: frame show frame stack
 # Location of Call: Call:
––
* 0: _cstart+0xe4 main(argc = 3, argv = 0x30954)
SrcDbg:

Data Manipulation Commands
Chapter 8

8-10

Print Expression Value

Syntax

P[rint] [<C_expr>]

Usage

P[rint] returns the value of the specified <C_expr>. P[rint] displays the
value according to the resulting data type of the expression. All program
objects referred to within the <C_expression> are relative to the current
scope, with one exception: “static” variables outside the current scope may
be accessed using scope expressions.

The printed values are displayed in the following format:

Parameter type: Display format type:

char pointer <hex address> = <string>

all other pointers <hex address>

array array elements in correct type

struct struct elements in correct type

union union fields in correct type

enum enum constant name of the value or Decimal if no name has
the actual value

char Character constant

short Decimal

int Decimal

long Decimal

unsigned Decimal

unsigned char Decimal

unsigned short Decimal

unsigned int Decimal

unsigned long Decimal

float float

double float

Important: SrcDbg will prompt for the number of elements to be printed
if a unsized array is specified. SrcDbg will display “union”, if a union is
specified. To obtain a useful value, a union field must be specified.

Print

Data Manipulation Commands
Chapter 8

8-11

To change the format of the P[rint] output, it is necessary to cast the type
of the program object be printed to the desirable type. For example:

SrcDbg: print argc
2
SrcDbg: print (void *) argc
0x2

The P[rint] command can accept a function as a parameter. For example:

SrcDbg: print main()

SrcDbg will run the function and display the function’s returning value. If
a breakpoint is set within the function, SrcDbg will stop at the breakpoint.
A new prompt will be issued showing that SrcDbg has stopped while
executing a previous command. For example:

1.SrcDbg:

When SrcDbg exits from the function, the normal SrcDbg prompt is
resumed and the functions returning value will be printed.

If only the function name is specified as a P[rint] parameter, only the
address for the function is returned. For example:

SrcDbg: print main
0x240846

Examples

The following examples show various uses of the P[rint] command. where
is forked with 2 parameters. The print command is used to show each of
the parameters passed to where. The program is executed up to a
breakpoint set at line 83. The P[rint] command is used again to show the
search directory:

$ srcdbg where where.c /h0/usr/kathie “where” forked with 2 parameters
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: go main
File: “where.c”
Context: where\main
 19: void main(argc,argv)
 ^
SrcDbg: step
 23: register char *filename = argv[1];
 ^
SrcDbg(STEP): print argc print argc
3
SrcDbg: print argv print argv
0x27954

Data Manipulation Commands
Chapter 8

8-12

SrcDbg: print argv[0] print argv[0]
0x2794c = “where”
SrcDbg: print argv[1] print argv[1]
0x27888 = “where.c”
SrcDbg: print argv[2] print argv[2]
0x27890 = “/h0/usr/kathie”
SrcDbg: print *filename print first character of filename
’\0’
SrcDbg: print filename print filename string
0x27958 = “”
SrcDbg: go 86 execute to line 86
File: “where.c”
Context: where\read_dir_stuff\$blk0 86: while(gets(buf)) {
 ^
SrcDbg: print buf print buf
0x2601e = “”
SrcDbg: s
 87: if(str = (char *)rindex(buf,’/’)) {
 ^
SrcDbg(STEP): print buf print buf; note new value
0x2601e = “/h0/usr/kathie/SEA”
SrcDbg: print (char *) inbuf print inbuf; note same value
0x2601e = “/h0/usr/kathie/SEA”
SrcDbg: print inbuf print array contents until [Ctrl-C]
’/’, ’h’, ’0’, ’/’, ’u’, ’s’, ’r’, ’/’, ’k’, ’a’, ’t’, ’h’, ’i’, ’e’, ’/’, ’S’,
’E’, ’A’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’,
’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’,
’\0’, ’\0’, [aborted]
SrcDbg: s 3
 88: *str = ’\0’;
 ^
 89: p = str + 1;
 ^
 91: if(!strcmp(p,filename)) puts(buf);
 ^
SrcDbg(STEP): print filename print filename
0x27888 = “where.c”
SrcDbg: print p print p
0x2602d = “SEA”
SrcDbg: s
 92: if(sigflag) break;
 ^
SrcDbg(STEP): s
 86: while(gets(buf)) {
 ^
SrcDbg(STEP): print sigflag print sigflag
FALSE
SrcDbg: print .r0 print register .r0
0
SrcDbg: print (char *) .sr print status register
0x8014
SrcDbg: g
/h0/usr/kathie/SEA where output
/h0/usr/kathie/SOURCE
“where” exited normally
SrcDbg:

Data Manipulation Commands
Chapter 8

8-13

Assign Value to Expressionm

Syntax

a[ssign] [<C_expr>] = [<C_expr>]

Usage

A[ssign] sets the value of a program object.

Examples

The following example forks where. Two parameters are passed to the
program. The P[rint] command is used to show the value of argc. The
value of argc is then changed using the A[ssign] command. The same
sequence is then executed with the variable argv[1]:

$ srcdbg where where.c /h0/usr/kathie “where” forked with 2 parameters
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go main

File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg: print argc print value of argc
3

SrcDbg: assign argc = 50000000 new value for argc
SrcDbg: print argc

50000000

SrcDbg: print argv[1] print value for argv[1]
0x27888 = “where.c”

SrcDbg: assign *(argv[1] + 5) = ’\0’ new value for argv[1]
SrcDbg: print argv[1]

0x27888 = “where”

SrcDbg: assign .r1 = argv[1] save expression in .r1
SrcDbg: print (char *) .r1 print value of .r1
0x29888 = “where.c”

SrcDbg:

Assign

Data Manipulation Commands
Chapter 8

8-14

Change Context

Syntax

c[h]c [<scope_expr>]

Usage

C[h]c changes the context for default name and location resolution. If the
parent of the block specified in <scope_expr> is in the stackframe, then the
logical context is changed to that frame number. If the parent of the block
is not in the frame stack, then the logical context is changed to the
specified block and no variables will be active.

The context may also be changed to a file or module. If the <scope_expr>
is a file, the context will be the first function in the file. If the
<scope_expr> is a module, the context will be the first function of the first
file in the module.

If no argument is specified, the C[h]c command returns SrcDbg to the
location of the execution pointer.

The C[h]c command, like the F[rame] command, does not effect the
location of the execution pointer.

Examples

In the following example, SrcDbg is forked with two parameters and the
execution pointer is moved main. The C[h]c command is used to change
the default context to the function fork_dir. The L[ist] command is used to
list the lines 39 - 59 and the I[nfo] command is used to display the logical
and actual locations in the program. The S[tep] command is used to
advance the execution pointer one statement past main. The C[h]c
command is used to change context to the function check_args, and the
I[nfo] command is used to obtain information about the variable argc.
Then, the G[o] command is used to run where to completion.

$ srcdbg where where.c /h0/usr/kathie fork where
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: go main move execution pointer to main
File: “where.c”
Context: where\main
 19: void main(argc,argv)
 ^

Chc

Data Manipulation Commands
Chapter 8

8-15

SrcDbg: chc fork_dir change context to fork_dir
SrcDbg: list list lines 39-59
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 40: register char **argv,
 41: *pathlist;
 42: register int *pid,
 43: *pipe,
 44: *stout;
 45: {
 46: register int stin;
 47: extern int os9fork(), os9exec();
 48: extern char **environ;
 49:
 50: /* initialize argv list for dir */
 51: argv[0] = “dir”;
 52: argv[1] = “–rasu”;
 53: argv[2] = pathlist;
 54: argv[3] = NULL;
 55:
 56: /* dup standard out “save it” and close standard out */
 57: *stout = dup(1);
 58: close(1);
 59:
SrcDbg(LIST): i get information about program location
Logical Location:
File: “where.c”
Context: where\fork_dir
 39: void fork_dir(argv,pathlist,pid,pipe,stout)
 ^
Actual Location:
File: “where.c”
Context: where\main
 19: void main(argc,argv)
SrcDbg(LIST): step step to line after main
 23: register char *filename = argv[1];
 ^
SrcDbg(STEP): cc check_args change context to check_args
SrcDbg: i argc get information about argc
register int argc;
SrcDbg(LIST): go run where to completion
SrcDbg: g
/h0/usr/kathie/SEA where output
/h0/usr/kathie/SOURCE
“where” exited normally
SrcDbg:

Data Manipulation Commands
Chapter 8

8-16

Displays Scope Expression

Syntax

con[text] [<scope_expression>]

Usage

Con[text] displays the complete scope expression of an object.

Examples

In the following example, where is forked with two parameters and
the execution pointer is moved to main. The Con[text] command is
used to obtain a full scope expression for the variable argc.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go main move execution pointer to main
File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg: con argc display the context of argc
where\main\argc

SrcDbg:

Context

Data Manipulation Commands
Chapter 8

8-17

Displays All Occurrences of <name>

Syntax

fi[nd] [<name>]

Usage

Fi[nd] displays all scope expressions for <name> found in the
debug process.

If Fi[nd] is entered without any arguments, the previous Fi[nd] command
will be repeated. If there was no previous Fi[nd] command, an error
message will be returned:

Error: no previous “find”

Examples

In this example, file (page 8 in Overview of SrcDbg) is forked. The Fi[nd]
command is used to locate every instance of the variable ’i’ in file.

$ srcdbg file fork “file”
Reading symbol file “file.dbg”.

file1.c file2.c

Reading symbol file “file.stb”.

Context: file_cstart

SrcDbg: find i find every instance of the
file\main\$blk0\$blk1\i variable ’i’ in file
file\file2.c\f\$blk0\i

file\main\$blk0\i

file\file2.c\struct tag1\i

file\f\i

SrcDbg:

Find

Data Manipulation Commands
Chapter 8

8-18

Display Local Symbol Values

Syntax

lo[cals]

Usage

Lo[cals] displays the values of all local symbols.

Examples

In the following example, where is forked with two parameters and the
S[tep] command is used to move the execution pointer to line 26. Then, the
Lo[cals] command is used to obtain the values of all the local variables.

$ srcdbg where where.c /h0/usr/kathie fork where
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: step 3 step to line 26
File: “where.c”

 19: void main(argc,argv)

 ^

 23: register char *filename = argv[1];

 ^

 26: check_args(argc);

 ^

SrcDbg(STEP): locals get values on
filename = 0x27888 = “where.c” all local variables
pid = 944634

pipe = 158848

stout = –1592735107

argc = 3

argv = 0x27954

SrcDbg:

Locals

Chapter

9

9-1

System Commands

The following commands are described in this chapter:

Command: Description:

C[h]d changes the data directory SrcDbg uses to search for files

Sh[ell] forks a new Shell to allow access to OS-9

H[elp] provides a help for SrcDbg commands

Q[uit] exits SrcDbg and returns command to the Shell

C[h]x changes the current execution directory for SrcDbg

Se[tenv] sets a shell-type environment variable

Unse[tenv] deletes a shell-type environment variable

System Commands
Chapter 9

9-2

Change Directory

Syntax

C[h]d <pathlist>

Usage

C[h]d changes SrcDbg’s current data directory. This does not change the
current directory of the parent Shell (i.e. the current directory when
SrcDbg was invoked).

Examples

The following example shows how the C[h]d command can be used. The
program where is forked, but the file where.c is not found. The C[h]d
command is used to move to the correct directory in order to fork
the program:

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: step

File: “where.c”

Could not open file “where.c” - Error #000:216(E$PNNF)File not found.

SrcDbg(STEP): chd /h0/usr/kathie/source Change directory
SrcDbg: info display source location
File: “where.c”

Context: where\main

 19: void main(argc,argv)

 ^

SrcDbg: step

 23: register char *filename = argv[1];

 ^

SrcDbg(STEP):

Chd

System Commands
Chapter 9

9-3

Fork Shell

Syntax

Sh[ell] [<command>]

$ [<command>]

Usage

Shell executes any specified Shell <command> and returns control to
SrcDbg. If no <command> is specified, the user is placed in a new Shell.
To return to SrcDbg, exit the shell using the logout command or [Esc] .

Important: If a complex Shell command is desired using a semi-colon
(“;”), a Shell should be forked by itself. Otherwise, the semicolon will be
interpreted by SrcDbg, not the Shell. For example, in the following SrcDbg
command, the semicolon separates a Shell command and a
SrcDbg command:

SrcDbg: shell dir;info argc

Examples

The following examples show the use of the S[hell] command:

SrcDbg: shell dir execute dir command and return to SrcDbg
 Directory of . 16:40:32

capture capture.new capture2 junk mbox

where.c where.list

SrcDbg: shell fork new shell
1.walden: dir

 Directory of . 16:40:32

capture capture.new capture2 junk mbox

where.c where.list

1.walden: logout exit Shell and return to SrcDbg
SrcDbg: $ dir -u * ! grep –nz pathlist grep for pathlist
filename=“where.c”

 12 fork_dir(argv,pathlist,pid,pipe,stout),

 35 if(argc<2) exit(_errmsg(0,“where <filename>

[<pathlist>]\n”));

 39 void fork_dir(argv,pathlist,pid,pipe,stout)

 41 *pathlist;

 53 argv[2] = pathlist;

SrcDbg: $ fork new shell
1.walden:

Shell

System Commands
Chapter 9

9-4

Display SrcDbg Help

Syntax

H[elp]

?

Usage

SrcDbg provides on-line help when H[elp] or ? is entered.

Exit SrcDbg

Syntax

q[uit]

<escape>

Usage

Q[uit] exits SrcDbg or aborts an interrupted function call. If SrcDbg is
exited, all open files are closed and control returns to the Shell. If a
interrupted function call is aborted, SrcDbg returns to the debugging
session at the point from which the function call was made.

Help

Quit

System Commands
Chapter 9

9-5

Change Execution Directory

Syntax

c[h]x <pathlist>

Usage

C[h]x changes the current execution directory for SrcDbg. This command
effects where SrcDbg will look for program object, “.dbg” and “.stb” files.

C[h]x does not change the current execution directory of the parent Shell
(i.e. the current directory when SrcDbg was invoked).

Examples

The following example shows the use of the C[h]x command:

$ srcdbg where where.c /h0/usr/kathie attempt to fork “where” ; fail
Could not fork “where” – Error #000:216 (E$PNNF) File not found.

SrcDbg: chx /h0/cmds/kathie change execution directory
SrcDbg: fork where where.c /h0/usr/kathie attempt to fork “where”
Reading symbol file “where.dbg”. success!
where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg:

Chx

System Commands
Chapter 9

9-6

Set Environment Variable

Syntax

se[tenv] <environment_name> <environment_definition>

Usage

Se[tenv] sets a shell-type environment variable for use by SrcDbg and
SrcDbg’s child processes. The arguments <environment_name> and
<environment_definition> are strings that are stored in the environment list
by SrcDbg.

Se[tenv] does not change the environment of the parent Shell (i.e. the
shell from which SrcDbg was invoked).

Examples

The following example shows how the Se[tenv] command is used:

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: $ printenv display environment variables
PORT=/t21

HOME=/h0/USR/KATHIE

SHELL=shell

USER=kathie

PATH=..

TERM=kt7

SrcDbg: setenv PATH ../h0/cmds:/d0/cmds:/dd/cmds sets PATH
SrcDbg: $ printenv display environment variables
PORT=/t21

HOME=/h0/USR/KATHIE

SHELL=shell

USER=kathie

PATH=../h0/cmds:/d0/cmds:/dd/cmds

TERM=kt7

SrcDbg:

Setenv

System Commands
Chapter 9

9-7

Unset Environment Variable

Syntax

unse[tenv] <environment_name>

Usage

Unse[tenv] deletes an environment variable from the environment list.

Unse[tenv] does not change the environment of the parent Shell (i.e. the
shell from which SrcDbg was invoked).

Important: If the specified <environment_name> has not been previously
defined, Unse[tenv] has no effect and does not print a message.

Examples

The following example shows how the Unse[tenv] variable is used:

$ srcdbg where where.c /h0/usr/kathie “where” forked
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: $ printenv display environment variables
PORT=/t21
HOME=/h0/USR/KATHIE
SHELL=shell
USER=kathie
PATH=../h0/cmds:/d0/cmds:/dd/cmds
TERM=kt7
SrcDbg: setenv BUGS bunny set environment variable BUGS
SrcDbg: $ printenv display environment variables
PORT=/t21
HOME=/h0/USR/KATHIE
SHELL=shell
USER=kathie
PATH=../h0/cmds:/d0/cmds:/dd/cmds
TERM=kt7
SrcDbg: unsetenv BUGS unset BUGS
SrcDbg: $ printenv display environment variables
PORT=/t21
HOME=/h0/USR/KATHIE
SHELL=shell
USER=kathie
PATH=../h0/cmds:/d0/cmds:/dd/cmds
TERM=kt7
SrcDbg:

Unsetenv

Chapter

10

10-1

Assembly Level Commands

The following commands are described in this chapter after a discussion of
assembly level display information:

Command: Description:

Asm displays current register values and the current machine
instruction

C[hange] changes memory at the specified location

Dil[ist] displays C source with disassembly at the specified location

Di[sasm] disassembles memory at the specified location

D[ump] displays memory at the specified location

Gostop executes a number of machine instructions in the current
subroutine

Li[nk] links to a module

Mf[ill] fills memory with the specified value

Ms[earch] searches memory for the specified value

Sy[mbol] displays the result of the expression as a symbolic expression

T[race] executes a number of machine instructions

The register display appears as follows:

dn: 0000000D 0000004C 00000080 00000003 00000000 00000108 00001990 00000000

an: 00000000 0002F990 00000000 000E6780 00000000 0002F888 00036000 0002F888

pc: E67CE cc: 00 (–––––)

_cstart >2D468010 move.l d6,_totmem(a6)

The first two lines of the display show the data and address registers from
.d0 - .d7. and .a0 - .a7 respectively. The third line shows the program
counter and status register. Only the user byte (containing the processor
condition code values) are available. The condition code bits are
interpreted and displayed after the condition code register hex value
in parentheses.

The bit interpretation is:

(XNZVC)

X = Extend

N = Negative

Assembly Level Display
Information

Assembly Level Commands
Chapter 10

10-2

Z = Zero

V = Overflow

C = Carry

The following discussion of the 68881 coprocessor registers applies only to
OS-9 systems running on a 68020 processor with the 68881 installed as
a coprocessor.

If the display 68881 registers option is set, the next line(s) indicate the
state of the 68881 coprocessor. If the process has yet to access the 68881,
the following message appears:

<68881 in Null state>

When the process accesses the 68881, a floating point register dump will
appear. If a decimal display is indicated (SrcDbg defaults to this), the
registers appear in the following format:

fp0:6.666666666666666 fp4:<NaN> fpcr: 0000 XN

fp1:<NaN> fp5:<NaN> fpiar: 00000000

fp2:<NaN> fp6:<NaN> fpsr: 00000208

fp3:<NaN> fp7:<NaN> (–––– 0)

If the setting of the debugger decimal register display option indicates hex
display, the 68881 coprocessor registers appear as follows:

fp0:40010000 D5555555 55555200 fp4:7FFF0000 FFFFFFFF FFFFFFFF fpcr: 0000 XN

fp1:7FFF0000 FFFFFFFF FFFFFFFF fp5:7FFF0000 FFFFFFFF FFFFFFFF fpiar: 00000000

fp2:7FFF0000 FFFFFFFF FFFFFFFF fp6:7FFF0000 FFFFFFFF FFFFFFFF fpsr: 00000208

fp3:7FFF0000 FFFFFFFF FFFFFFFF fp7:7FFF0000 FFFFFFFF FFFFFFFF (–––– 0)

The value of the registers are printed in decimal using scientific notation
when the value becomes very large or very small. IEEE not-a-number
values are printed as <NaN>, plus and minus infinity values are printed as
<+Inf> and <-Inf>, respectively. The extended precision values are
converted to double precision before printing, so conversion overflow may
result. The hexadecimal format display can be used to determine the exact
values in the registers.

The eight 68881 floating point registers are displayed in either hex or
decimal form depending on the floating point register display
option setting.

The 68881 status registers appear to the far right of the display:

 fpcr: 0000 –– 68881 control register
fpiar: 00000000 68881 instruction address register

Assembly Level Commands
Chapter 10

10-3

 fpsr: 00000000 68881 status register
 (–––– 0) FPSR interpretation bits

The –– field next to the FPCR register displays an interpretation of the
68881 rounding mode and precision. These fields are interpreted
as follows:

 fpcr: 0000 ––

Rounding mode: N = Nearest
Z = Toward zero
– = Toward minus infinity
+ = Toward plus infinity

Rounding Precision: X = Extended
S = Single
D = Double
? = Undefined

The FPSR condition code byte and the quotient byte are displayed as
follows:

(–––– 0)

Quotient byte value (displays in signed decimal)

Floating point condition codes:

? = NaN or Unordered

I = Infinity

Z = Zero

N = Negative

Immediately following the main floating register display, the debugger will
interpret the exception enable byte of the control register and the exception
status and accrued exception bytes of the status register. If all bits in the
byte are zero, nothing is printed. Otherwise the bits are displayed
as follows:

XE:(BSUN,SNAN,OPERR,OVFL,UNFL,DZ,INEX2,INEX1) FPCR exception enable
AX:(IOP,OVFL,UNFL,DZ,INEX,???,???,???) FPSR accrued exception
XS:(BSUN,SNAN,OPERR,OVFL,UNFL,DZ,INEX2,INEX1) FPSR exception status

Processor registers can be changed with the A[ssign] command. Any
processor register or coprocessor control register can be changed with
this command:

Assembly Level Commands
Chapter 10

10-4

SrcDbg: a .d0 = 0

SrcDbg: a .fp0 = 1.0

The following registers are supported for the MC68xxx:

Register: Description:

.d0 - .d7. data registers

.a0 - .a7 address registers (.sp may be used for .a7)

.sr lower order byte of the status register (.cc may be used for .sr)

.pc program counter

These registers are supported for the MC68881 floating point coprocessor:

Register: Description:

.fp0 - .fp7 floating point registers

.fpcr control register

.fpsr status register

.fpiar instruction address register

SrcDbg also supports the use of debugger convenience registers .r0 - .r7.
These registers are available so that the user may store expression results
for later access.

The instruction disassembly display format, conditional instructions may
be followed with a –> indicator. If –> is present, the instruction will
perform its TRUE operation, otherwise the instruction performs the
FALSE operation. The appropriate condition code register is examined to
determine which case the processor will perform. The following
conditional instruction categories use this feature:

Category: Description:

Bcc Branch on condition

DBcc Decrement and branch on condition

Scc Set According to condition

TRAPcc Trap on condition

FBcc Branch on floating condition

FScc Set According to floating condition

FDBcc Decrement and branch on floating cond

FTRAPcc Trap on floating condition

Instruction Disassembly
Memory Display

Assembly Level Commands
Chapter 10

10-5

To display a floating point number in machine registers, use the print
command. For example:

Example:

SrcDbg: di _cstart instruction disassembly
_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+0x4 >2D468014 move.l d6,_sbsize(a6)
_cstart+0x8 >3D438018 move.w d3,_pathcnt(a6)
_cstart+0xC >4A85 tst.l d5
_cstart+0xE >671E beq.b _cstart+0x2E
_cstart+0x10 >08050000 btst.b #0,d5
_cstart+0x14 >6614 bne.b _cstart+0x2A–>
_cstart+0x16 >41F55800 lea.l 0(a5,d5.l),a0
_cstart+0x1A >4A68FFFE tst.w –2(a0)
_cstart+0x1E >660A bne.b _cstart+0x2A–>
_cstart+0x20 >5988 subq.l #4,a0
_cstart+0x22 >49E8FFFC lea.l –4(a0),a4
_cstart+0x26 >7001 moveq.l #1,d0
_cstart+0x28 >6020 bra.b _cstart+0x4A
_cstart+0x2A >423558FF clr.b –1(a5,d5.l)
_cstart+0x2E >204D movea.l a5,a0

SrcDbg(DISASM): di _cstart 5 disassemble 5 instructions
_cstart >2D468010 move.l d6,_totmem(a6)
_cstart+0x4 >2D468014 move.l d6,_sbsize(a6)
_cstart+0x8 >3D438018 move.w d3,_pathcnt(a6)
_cstart+0xC >4A85 tst.l d5
_cstart+0xE >671E beq.b _cstart+0x2E

The floating point conditional instructions use the condition portion of the
68881 FPSR register, the others use the processor CC register. During
memory disassembly display the –> indicator appears based on the static
value of the condition register value when the disassembly occurred. The
following are examples of floating point memory displays:

SrcDbg: dump f_ :1 display in hex/ascii format
f_ – 3F2AAAAB 00000000 00000000 00000000 ?**+............
SrcDbg(DUMP): dump f_ :float display in single-precision decimal
f_ – 3F2AAAAB 0.6666666865348816
SrcDbg(DUMP): dump a_ :1 display in hex/ascii format
a_ – 3FE55555 55555555 3F2AAAAB 00000000 ?eUUUUUU?**+....
SrcDbg(DUMP): dump a_ :double display in double–precision decimal
a_ – 3FE5555555555555 0.6666666666666666

To display a floating point number in machine registers, use the print
command. For example:

SrcDbg: print .fp0

2.530733e–07

Floating Point Memory
Displays

Assembly Level Commands
Chapter 10

10-6

Display Current Register Values and Machine Instruction

Syntax

asm

.

Usage

Asm displays current register values and the current machine instruction.

Examples

The following example uses the Asm command to display the register
values at where_cstart:

$ srcdbg where where.c /h0/usr/kathie

Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: .

dn: 0000000D 0000004C 00000080 00000003 00000000 00000108 00001990 00000000

an: 00000000 0002F990 00000000 000E6780 00000000 0002F888 00036000 0002F888

pc: E67CE cc: 00 (–––––)

_cstart >2D468010 move.l d6,_totmem(a6)

SrcDbg:

Asm

Assembly Level Commands
Chapter 10

10-7

Change Memory

Syntax

c[hange] [<C_expr>] change byte
cw [<C_expr>] change word
changeword [<C_expr>] change word
cl [<C_expr>] change longword
changelong [<C_expr>] change longword

Usage

C[hange] changes memory starting at the result of <C_expr>.

When the C[hange] command is invoked, SrcDbg displays the first
byte/word/longword at the location specified by <C_expr> and then waits
for the user to respond.

If a C expression is entered at this point, the memory at that location will
be changed to the result of the entered expression.

If a “–” sign is entered, SrcDbg moves back one byte/word/longword
without changing memory contents. If a [Return] is entered, SrcDbg
moves forward one byte/word/longword without changing
memory contents.

If a period is entered, the C[hange] command is terminated and the user is
returned to a “SrcDbg: ” prompt.

Change

Assembly Level Commands
Chapter 10

10-8

Examples

The following example shows how the C[hange] command is used to alter
the memory at inbuf. The user responses are shown in italics.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: change inbuf change/examine bytes of memory beginning at “inbuf”
inbuf : 00 0xff enter a hex number
inbuf+0x1 : 00 ’c’ enter a character constant
inbuf+0x2 : 00 12 enter a decimal number
inbuf+0x3 : 00 *argv[0] enter a C expression
inbuf+0x4 : 00 – move back one byte
inbuf+0x3 : 77 <return> move forward one byte
inbuf+0x4 : 00 . exit C[hange]
SrcDbg: change inbuf change/examine bytes of memory beginning at “inbuf”
inbuf : FF <return> successive carriage returns
inbuf+0x1 : 63 <return> display contents of “inbuf”
inbuf+0x2 : 0C <return>

inbuf+0x3 : 77 <return>

inbuf+0x4 : 00 <return>

inbuf+0x5 : 00 <return>

inbuf+0x6 : 00 . exit C[hange]
SrcDbg: changelong inbuf change/examine longwords of memory beginning at “inbuf”
inbuf : FF630C77 0 enter a decimal number
inbuf+0x4 : 00000000 . exit C[hange]
SrcDbg: changeword change/examine words of memory beginning at “inbuf”
inbuf : 0000 argc enter a C expression
inbuf+0x2 : 0000 – move back one word
inbuf : 0003 . exit C[hange]
SrcDbg:

Assembly Level Commands
Chapter 10

10-9

Display C Source With Disassembly

Syntax

dil[ist] [<location_expr>][: <count>]

Usage

Dil[ist] displays the current C source line and the assembly code which
maps to the current C source line starting at the address specified by
<dil_expr>. If <count> is specified, then <count> lines will be displayed.

If Dil[ist] is entered without any arguments, the previous Dil[ist] command
will be repeated. If there was no previous Dil[ist] command, an error
message will be returned:

Error: no previous “dilist”

After a Dil[ist] command has been executed, SrcDbg displays the
following prompt:

SrcDbg(DILIST):

To continue “dilisting” the contents following the last address displayed by
the previous Dil[ist] command, enter [Return] .

Dilist

Assembly Level Commands
Chapter 10

10-10

Example

The following example shows how the Dil[ist] command is used:

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: dilist main:10 display C source line and disassembly
 19: void main(argc,argv) for 10 lines starting at function main
 ^

main+0xa >203CFFFFFFA4 move.l #–92,d0

main+0x10 >6100FEDA bsr.w _stkchec

main+0x14 >4FEFFFF4 lea.l –12(a7),a7

 23: register char *filename = argv[1];

 ^

main+0x18 >206F0010 movea.l 16(a7),a0

main+0x1c >24680004 movea.l 4(a0),a2

 26: check_args(argc);

 ^

main+0x20 >2004 move.l d4,d0

main+0x22 >61000040 bsr.w check_args

SrcDbg(DILIST): dilist 26 :10 display C source line and disassembly
 26: check_args(argc); for 10 lines starting at C source line #26
 ^

main+0x20 >2004 move.l d4,d0

main+0x22 >61000040 bsr.w check_args

 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);

 ^

main+0x26 >4857 pea.l (a7)

main+0x28 >486F0008 pea.l 8(a7)

main+0x2c >486F0010 pea.l 16(a7)

main+0x30 >206F001C movea.l 28(a7),a0

main+0x34 >22280008 move.l 8(a0),d1

main+0x38 >202F001C move.l 28(a7),d0

SrcDbg(DILIST): dilist @0xe69e6 : 5 display source line/disassembly for 5 lines
main >4E550000 link.w a5,#0 starting at an absolute address
main+0x4 >48E7C8A0 movem.l d0–d1/d4/a0/a2,–(a7)

main+0x8 >2800 move.l d0,d4

 19: void main(argc,argv)

 ^main+0xa >203CFFFFFFA4 move.l #–92,d0

SrcDbg(DILIST):

Assembly Level Commands
Chapter 10

10-11

Disassemble Memory

Syntax

di[sasm] [[<C_expr>] [: [<count>]]]

Usage

Di[sasm] disassembles memory starting at the address specified by
<C_expr>.

If <count> is specified, then <count> machine lines will be disassembled
and displayed. If <count> is not specified, then sixteen machine lines will
be disassembled and displayed.

If Di[sasm] is entered without any arguments, the previous Di[sasm]
command will be repeated. If there was no previous Di[sasm] command,
an error message will be returned:

Error: no previous “disasm”

After a Di[sasm] command has been executed, SrcDbg displays the
following prompt:

SrcDbg(DISASM):

To continue disassembly of the contents following the last address
displayed by the previous Di[sasm] command, enter [Return] .

Disasm

Assembly Level Commands
Chapter 10

10-12

Examples

The following example shows how the Di[sasm] command is used to
disassemble memory at the .pc register:

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go main execute “where” until main
SrcDbg: disasm .pc disassemble 16 lines starting at
main+0xa >203CFFFFFFA4 move.l #–92,d0 the program counter register
main+0x10 >6100FEDA bsr.w _stkchec

main+0x14 >4FEFFFF4 lea.l –12(a7),a7

main+0x18 >206F0010 movea.l 16(a7),a0

main+0x1c >24680004 movea.l 4(a0),a2

main+0x20 >2004 move.l d4,d0

main+0x22 >61000040 bsr.w check_args

main+0x26 >4857 pea.l (a7)

main+0x28 >486F0008 pea.l 8(a7)

main+0x2c >486F0010 pea.l 16(a7)

main+0x30 >206F001C movea.l 28(a7),a0

main+0x34 >22280008 move.l 8(a0),d1

main+0x38 >202F001C move.l 28(a7),d0

main+0x3c >6100005C bsr.w fork_dir

main+0x40 >4FEF000C lea.l 12(a7),a7

main+0x44 >2F17 move.l (a7),–(a7)

SrcDbg(DISASM): disasm .pc + 0x3c : 4 disassemble 4 lines starting
main+0x46 >2F2F0008 move.l 8(a7),–(a7) at the address “.pc + 0x3c”
main+0x4a >222F0010 move.l 16(a7),d1

main+0x4e >200A move.l a2,d0

main+0x50 >610000FE bsr.w read_dir_stuff

SrcDbg(DISASM): <return> repeat previous DISASM command
main+0x54 >508F addq.l #8,a7

main+0x56 >4FEF000C lea.l 12(a7),a7

main+0x5a >4CED0510FFF4 movem.l –12(a5),d4/a0/a2

main+0x60 >4E5D unlk a5

SrcDbg(DISASM): disasm fork_dir : 3 disassemble 3 lines starting
fork_dir >4E550000 link.w a5,#0 at the function “fork_dir”
fork_dir+0x4 >48E7CEB8 movem.l d0–d1/d4–d6/a0/a2–a4,–(a7)

fork_dir+0x8 >2440 movea.l d0,a2

SrcDbg(DISASM):

Assembly Level Commands
Chapter 10

10-13

Displays Memory Contents

Syntax

d[ump] [[<C_expr>] [: [<count>] [<format>]]

Usage

D[ump] returns a formatted display of the physical contents starting at the
address specified by <C_expr>.

If <count> is specified, then <count> lines of information will be
displayed. If <count> is not specified, then sixteen lines of information will
be displayed.

Three types of formatted display are available with the <format> option:

Format: Data display:

f[loat] floating point format

d[ouble] double-length format

[e]x[tend] extended floating point format

If no <format> is specified, then data is displayed 16 bytes per line in both
hexadecimal and ASCII character format. Data that is non-displayable is
represented by a period (.) in the ASCII area.

If no <C_expression> is specified, the last D[ump] command is repeated. If
there was no previous D[ump] command, an error will be returned:

error: no previous dump

After a D[ump] command has been executed, SrcDbg displays the
following prompt:

SrcDbg(DUMP):

To continue “dumping” the contents following the last address displayed
by the previous D[ump] command, enter [Return] .

The address contents displayed are absolute addresses in memory. Certain
expressions may return an error because they try to access memory that
does not belong to SrcDbg or the process being debugged.

Dump

Assembly Level Commands
Chapter 10

10-14

Example

The following example shows how the D[ump] command is used:

SrcDbg: dump inbuf : 10 dump 10 lines of memory starting at inbuf
inbuf – 2F68302F 434D4453 00000000 00000000 /h0/CMDS........

inbuf+0x10 – 00000000 00000000 00000000 00000000

inbuf+0x20 – 00000000 00000000 00000000 00000000

inbuf+0x30 – 00000000 00000000 00000000 00000000

inbuf+0x40 – 00000000 00000000 00000000 00000000

inbuf+0x50 – 00000000 00000000 00000000 00000000

inbuf+0x60 – 00000000 00000000 00000000 00000000

inbuf+0x70 – 00000000 00000000 00000000 00000000

inbuf+0x80 – 00000000 00000000 00000000 00000000

inbuf+0x90 – 00000000 00000000 00000000 00000000

SrcDbg(DUMP): dump inbuf : 10 float dump 10 lines of memory starting at inbuf
inbuf – 2F68302F 2.111739533239287e–10 in floating point format
inbuf+0x10 – 00000000 0.

inbuf+0x20 – 00000000 0.

inbuf+0x30 – 00000000 0.

inbuf+0x40 – 00000000 0.

inbuf+0x50 – 00000000 0.

inbuf+0x60 – 00000000 0.

inbuf+0x70 – 00000000 0.

inbuf+0x80 – 00000000 0.

inbuf+0x90 – 00000000 0.

SrcDbg(DUMP): dump inbuf :extend 2 dump 2 lines of memory starting at inbuf
inbuf – 2F68302F434D445300696E69 0. in extended format
inbuf+0x30 – 000000000000000000000000 0.

SrcDbg(DUMP): <return> continue DUMP of 2 extend
inbuf+0x60 – 000000000000000000000000 0.

inbuf+0x90 – 000000000000000000000000 0.

SrcDbg(DUMP):

Assembly Level Commands
Chapter 10

10-15

Execute Machine Instruction in Current Subroutine

Syntax

gostop [<number>]

gs [<number>]

Usage

Gostop executes the specified number of machine instructions in the
current subroutine. If <number> is not specified, SrcDbg executes one
machine instruction.

After a Gostop instruction has been executed, SrcDbg displays the
following prompt:

SrcDbg(GOSTOP):

To continue “gostopping” through the program, hit [Return] or re-enter
the Gostop command. If <number> is specified, it remains in effect until a
Gostop command with a different number (or no number) is entered.

The Gostop command has the same function as the T[race] command with
one exception: if a “branch or jump to subroutine” is encountered while
“gostopping” through a program, the subroutine is executed without
tracing through it. To trace through subroutines, use the T[race] command.

Example

The following example shows how the Gostop command may be used:

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.
where.c
Reading symbol file “where.stb”.
Context: where_cstart
SrcDbg: go main execute “where” until main
File: “where.c”
Context: where\main
 19: void main(argc,argv)
 ^
SrcDbg: gostop execute one machine instruction
 19: void main(argc,argv)
 ^
dn: FFFFFFA4 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00030C80 00000000 00031958 0003194C 00031948 0003187C 00038000 00031868
pc: 1529F6 cc: 08 (–N–––)
main+0x10 >6100FEDA bsr.w _stkchec
SrcDbg(GOSTOP): <return> repeat last Gostop command

Gostop

Assembly Level Commands
Chapter 10

10-16

 19: void main(argc,argv) (execute next machine instruction)
 ^
dn: FFFFFFA4 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00030C80 00000000 00031958 0003194C 00031948 0003187C 00038000 00031868
pc: 1529FA cc: 00 (–––––)
main+0x14 >4FEFFFF4 lea.l –12(a7),a7
SrcDbg(GOSTOP): gostop 3 execute 3 machine instructions
 23: register char *filename = argv[1];
 ^
dn: FFFFFFA4 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00030C80 00000000 00031958 0003194C 00031948 0003187C 00038000 0003185C
pc: 1529FE cc: 00 (–––––)
main+0x18 >206F0010 movea.l 16(a7),a0
 23: register char *filename = argv[1];
 ^
dn: FFFFFFA4 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031958 0003194C 00031948 0003187C 00038000 0003185C
pc: 152A02 cc: 00 (–––––)
main+0x1c >24680004 movea.l 4(a0),a2
 26: check_args(argc);
 ^
dn: FFFFFFA4 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 0003185C
pc: 152A06 cc: 00 (–––––)
main+0x20 >2004 move.l d4,d0
SrcDbg(GOSTOP): <return> repeat last Gostop command
 26: check_args(argc); (execute next 3 machine instructions)
 ^
dn: 00000003 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 0003185C
pc: 152A08 cc: 00 (–––––)
main+0x22 >61000040 bsr.w check_args
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);
 ^
dn: 00000002 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 0003185C
pc: 152A0C cc: 09 (–N––C)
main+0x26 >4857 pea.l (a7)
 27: fork_dir(argv,argv[2],&pid,&pipe,&stout);
 ^
dn: 00000002 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 00031858
pc: 152A0E cc: 09 (–N––C)
main+0x28 >486F0008 pea.l 8(a7)
SrcDbg(GOSTOP): option source turn off source line display
SrcDbg: gostop execute next machine instruction
dn: 00000002 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 00031854
pc: 152A12 cc: 09 (–N––C)
main+0x2c >486F0010 pea.l 16(a7)
SrcDbg(GOSTOP): <return> execute next machine instruction
dn: 00000002 00031954 00000003 00000003 00000003 00000108 00001990 00000000
an: 00031954 00000000 00031888 0003194C 00031948 0003187C 00038000 00031850
pc: 152A16 cc: 09 (–N––C)
main+0x30 >206F001C movea.l 28(a7),a0

Assembly Level Commands
Chapter 10

10-17

Link to Module

Syntax

li[nk] <module name>

Usage

Li[nk] links SrcDbg to <module_name> and places the module address in
register .r7.

Examples

The following example shows how the Li[nk] command may be used:

SrcDbg: link t21 link SrcDbg to “t21”; place address of t21 module in register .r7
SrcDbg: dump .r7 dump memory contents of register .r7
.r7 – 4AFC0001 00000078 0000001D 00000070 J|.....x.......p
.r7+0x10 – 05550F00 80000004 00000000 00000000 .U..............
.r7+0x20 – 00C80000 00000000 00000000 00003F8E .H............?.
.r7+0x30 – 001D2000 19011723 00640068 00280000 #.d.h.(..
.r7+0x40 – 00000000 0000001C 00000100 01010001
.r7+0x50 – 1808180D 1B040117 03050807 000E0070 p
.r7+0x60 – 11130904 53636600 68703236 36310000 Scf.hp2661..
.r7+0x70 – 74323100 001C10AB 4AFC0001 00000078 t21....+J|.....x
.r7+0x80 – 0000001D 00000070 05550F00 80000004 p.U......
.r7+0x90 – 00000000 00000000 00C80000 00000000 H......
.r7+0xa0 – 00000000 00003F8E 001D4000 19011823 ?...@....#
.r7+0xb0 – 00640068 00280000 00000000 0000001C .d.h.(..........
.r7+0xc0 – 00000100 01010001 1808180D 1B040117
.r7+0xd0 – 03050807 000E0070 11130904 53636600 p....Scf.
.r7+0xe0 – 68703236 36310000 74323200 0065BF84 hp2661..t22..e?.
.r7+0xf0 – 4AFC0001 00000078 0000001D 00000070 J|.....x.......p
SrcDbg(DUMP): link where link SrcDbg to program “where”
SrcDbg: dump .r7 dump memory contents of register .r7
btext – 4AFC0001 0000387C 0000004C 00000048 J|....8|...L...H
btext+0x10 – 05550101 80010007 00000000 00000000 .U..............
btext+0x20 – 00000000 00000000 00000000 00000928 (
btext+0x30 – 0000004E 0000019E 00000C80 00000C00 ...N............
btext+0x40 – 000037AC 0000385E 77686572 65002D46 ..7,..8^where.–F
_cstart+0x2 – 80102D46 80143D43 8018082B 00050014 ..–F..=C...+....
_cstart+0x12 – 670E2D4C 801A6608 2D790000 0000801A g.–L..f.–y......
_cstart+0x22 – 4A85671E 08050000 661441F5 58004A68 J.g.....f.AuX.Jh
_cstart+0x32 – FFFE660A 598849E8 FFFC7001 60204235 .~f.Y.Ih.|p.‘ B5
_cstart+0x42 – 58FF204D D7EB000C 42A72F0B 74016100 X. MWk..B’/.t.a.
_cstart+0x52 – 21426076 43E80004 2D498BDA 74002260 !B‘vCh..–I.Zt.“‘
_cstart+0x62 – 2E09670C D3CD4229 FFFF2089 528260EE ..g.SMB).. .R.‘n
_cstart+0x72 – 538067E0 4A826610 4A68FFFE 670A4228 S.g‘J.f.Jh.~g.B(
_cstart+0x82 – FFFF2448 58886006 208D2448 52825282 ..$HX.‘. .$HR.R.
_cstart+0x92 – 4A946718 28544A1C 66FCB5CC 631E0C1C J.g.(TJ.f|5Lc...
_cstart+0xa2 – 00FC6618 528C2654 D7CD6014 0C2D00FC .|f.R.&TWM‘..–.|
SrcDbg(DUMP):

Link

Assembly Level Commands
Chapter 10

10-18

Fill Memory

Syntax

mf[ill][n] <begin> : <end> : <value> byte fill
mfw[n] <begin> : <end> : <value> word fill
mfillword[n] <begin> : <end> : <value> word fill
mfl[n] <begin> : <end> : <value> longword fill
mfilllong[n] <begin> : <end> : <value> longword fill

Usage

Mf[ill] fills memory in the address range from <begin> to <end> with
<value>. All arguments are <C_expr>’s.

[n] indicates that the fill is to be performed without respect to
word/longword boundaries. That is, word and longword memory fills are
done on a byte for byte basis. If the [n] option is not specified, word and
longword memory fills must begin on even addresses on a
non-68020 processor.

If the size of the fill specified from <begin> to <end> is not an even word
or longword multiple (for a word or longword memory fill), the size is
trimmed to the next lowest respective multiple.

If <value> starts with a “ when using the byte fill size, all remaining
characters are used as a fill string. The pattern is reused from the beginning
if the fill count has not been exhausted.

MFill

Assembly Level Commands
Chapter 10

10-19

Example

The following example show how the Mfill command may be used:

SrcDbg: mf inbuf : inbuf + 0x16 : 0x11 fill bytes of memory from inbuf to
inbuf+0x16 with 0x11

SrcDbg: dump inbuf : 5 dump 5 lines of memory starting at inbuf
inbuf – 11111111 11111111 11111111 11111111

inbuf+0x10 – 11111111 11111100 00000000 00000000

inbuf+0x20 – 00000000 00000000 00000000 00000000

inbuf+0x30 – 00000000 00000000 00000000 00000000

inbuf+0x40 – 00000000 00000000 00000000 00000000

SrcDbg(DUMP): mfw inbuf : inbuf + 0x16 :0x22 fill words of memory from inbuf to
inbuf+0x16 with 0x22

SrcDbg: dump inbuf : 5 dump 5 lines of memory starting at inbuf
inbuf – 00220022 00220022 00220022 00220022 .“.”.“.”.“.”.“.”

inbuf+0x10 – 00220022 00221100 00000000 00000000 .“.”.“..........

inbuf+0x20 – 00000000 00000000 00000000 00000000

inbuf+0x30 – 00000000 00000000 00000000 00000000

inbuf+0x40 – 00000000 00000000 00000000 00000000

SrcDbg(DUMP): mfl inbuf : inbuf + 0x16 : 0x33 fill longwords of memory from
inbuf to inbuf+0x16 with 0x33

SrcDbg: dump inbuf : 5 dump 5 lines of memory starting at inbuf
inbuf – 00000033 00000033 00000033 00000033 ...3...3...3...3

inbuf+0x10 – 00000033 00221100 00000000 00000000 ...3.“..........

inbuf+0x20 – 00000000 00000000 00000000 00000000

inbuf+0x30 – 00000000 00000000 00000000 00000000

inbuf+0x40 – 00000000 00000000 00000000 00000000

SrcDbg(DUMP): mfln inbuf + 1 : inbuf + 0x18 : 0x44 fill longwords of memory from
(inbuf +1) to (inbuf+0x18) with 0x44

without respect to longword boundaries
SrcDbg: dump inbuf : 5 dump 5 lines of memory starting at inbuf
inbuf – 00000000 44000000 44000000 44000000 D...D...D...

inbuf+0x10 – 44000000 44000000 44000000 00000000 D...D...D.......

inbuf+0x20 – 00000000 00000000 00000000 00000000

inbuf+0x30 – 00000000 00000000 00000000 00000000

inbuf+0x40 – 00000000 00000000 00000000 00000000

SrcDbg(DUMP):

Assembly Level Commands
Chapter 10

10-20

Search Memory

Syntax

ms[earch][n] <begin> : <end> : <value> [: <mask>] byte search
msw[n] <begin> : <end> : <value> [: <mask>] word search
msearchword[n] <begin> : <end> : <value> [: <mask>] word search
msl[n] <begin> : <end> : <value> [: <mask>] longword search
msearchlong[n] <begin> : <end> : <value> [: <mask>] longword search

Usage

Ms[earch] searches memory from <begin> to <end> for <value> and
displays each line where <value> is found. All arguments are <C_expr>’s.

[n] indicates that the search is to be performed without respect to
word/longword boundaries. That is, word and longword memory searches
are done on a byte for byte basis. If the [n] option is not specified, word
and longword memory searches must begin on even addresses on a
non-68020 processor.

If the range of the search specified from <begin> to <end> is not an even
word or longword multiple (for a word or longword memory search), the
range is trimmed to the next lowest respective multiple.

If <value> starts with a “ (quotation mark) when using the byte search
size, all remaining characters are used as a search string. The pattern is
reused from the beginning if the search count has not been exhausted.

A <mask> may be specified to limit the comparison to only those bits set
in the mask. If <mask> is not specified, the mask used is –1 (all bits set).
The mask parameter is ignored for multiple character patterns.

Msearch

Assembly Level Commands
Chapter 10

10-21

Example

The following example shows how the Msearch command may be used:

SrcDbg: msw btext : etext : 1 search for word-aligned “0001” in
the memory area from btext to etext

btext+0x2 – 00010000 387C0000 004C0000 00480555 8|...L...H.U

sprintf+0x1c0 – 0001206F 000C58AF 000C2008 56802200 .. o..X/.. .V.“.

putc+0x40 – 000141EF 00072208 306A000E 2008206A ..Ao..“.0j.. . j

fclose+0x20 – 0001670E 200A6154 28006006 4A6A000C ..g. .aT(.‘.Jj..

fseek+0xb0 – 000167BE 7001B0AF 00206608 202A0008 ..g>p.0/. f. *..

ftell+0x2e – 00017200 306A000E 20086100 0E50588F ..r.0j.. .a..PX.

getw+0xb6 – 0001200A 7210D081 25400004 2200306A .. .r.P.%@..“.0j

setbuf+0x68 – 00010012 202A0004 322A0012 48C1D081 *..2*..HAP.

_iobinit+0x16 – 00018370 3D7C0002 838A3D7C 0002838C ...p=|....=|....

_T$LDiv+0x14 – 00016122 E20A6402 4480E20A 64024481 ..a“b.d.D.b.d.D.

getstat+0xc – 0001672E 0C010006 673A0C01 00026710 ..g.....g:....g.

getstat+0x26 – 00016000 04564E40 008D6500 044E206F ..‘..VN@..e..N o

lseek+0xc – 00016716 0C010002 670672CB 6000028E ..g.....g.rK‘...

modload+0xe – 000164E4 4CDF0600 6000022A 48E76080 ..ddL_..‘..*Hg‘.

os9fork+0x24 – 00016704 262F0034 282F0030 08050000 ..g.&/.4(/.0....

_utinit+0x2 – 00014E75 4E752F05 7A004A80 6A047A08 ..NuNu/.z.J.j.z.

Tens16+0xa6 – 00013C67 0EF54646 D4973C9C D2B297D8 ..<g.uFFT.<.R2.X

_T$DInt+0x3a – 00015247 E288E291 51CEFFF2 64125281 ..RGb.b.QN.rd.R.

_T$DMul+0x18e – 000108C0 001F6030 0C828000 00006604 ...@..‘0......f.

PackD+0x60 – 00010101 01010101 01011111 01111101

SrcDbg: msw btext : btext + 0x400 : 0x4e40 search for system calls (signified by the
word “4e40”) in the memory area from btext to btext + 0x400

_stkcheck+0x30 – 4E40008C 321F4E75 202E8000 90AE8008 N@..2.Nu

trapinit+0x1a – 4E400021 64066100 254A6564 2F490014 N@.!d.a.%Jed/I..

trapinit+0xba – 4E400006 4E400006 12D866FC 4E754E55 N@..N@...Xf|NuNU

trapinit+0xbe – 4E400006 12D866FC 4E754E55 000048E7 N@...Xf|NuNU..Hg

SrcDbg: msl btext : etext : 0x4e400000 : 0xffffff80 search for non–I/O system calls
(signified by the mask “0xfffff f80”) in the memory area

from btext to etext
trapinit+0x1a – 4E400021 64066100 254A6564 2F490014 N@.!d.a.%Jed/I..

trapinit+0xba – 4E400006 4E400006 12D866FC 4E754E55 N@..N@...Xf|NuNU

trapinit+0xbe – 4E400006 12D866FC 4E754E55 000048E7 N@...Xf|NuNU..Hg

kill_dir+0x128 – 4E400029 245F6000 213448E7 C8302440 N@.)$_‘.!4HgH0$@

modlink+0xc – 4E400000 64084CDF 06006000 024E200A N@..d.L_..‘..N .

modload+0xc – 4E400001 64E44CDF 06006000 022A48E7 N@..ddL_..‘..*Hg

munload+0x8 – 4E40001D 60000206 48E76080 22006600 N@..‘...Hg‘.“.f.

sbrk+0x14 – 4E400007 64000008 225F6000 01562D40 N@..d...“_‘..V–@

_srqmem+0x2 – 4E400028 650A2D40 8BCE200A 245F4E75 N@.(e.–@.N .$_Nu

srtmem+0x8 – 4E400029 245F6000 00F848E7 60804E40 N@.)$‘..xHg‘.N@

setpr+0x4 – 4E40000D 600000C2 48E76080 48E71C40 N@..‘..BHg‘.Hg.@

os9fork+0x3c – 4E400005 4CDF0238 60000056 48E76080 N@..L_.8‘..VHg‘.

getpid+0x4 – 4E40000C 6000004A 48E76080 4E40000C N@..‘..JHg‘.N@..

Assembly Level Commands
Chapter 10

10-22

getuid+0x4 – 4E40000C 65000040 20016000 003848E7 N@..e..@ .‘..8Hg

setuid+0x6 – 4E40001C 6000002A 48E76080 41FA0012 N@..‘..*Hg‘.Az..

_sigint+0x10 – 4E400009 60000012 2001206E 8BD24E90 N@..‘... . n.RN.

_sigint+0x20 – 4E40001E 91C8C188 64062D41 800C70FF N@...HA.d.–A..p.

SrcDbg: msln btext : etext : 0x4e400000 : 0xffffff80 same as last search, but without
respect to longword boundaries

trapinit+0x1a – 4E400021 64066100 254A6564 2F490014 N@.!d.a.%Jed/I..

trapinit+0xba – 4E400006 4E400006 12D866FC 4E754E55 N@..N@...Xf|NuNU

trapinit+0xbe – 4E400006 12D866FC 4E754E55 000048E7 N@...Xf|NuNU..Hg

kill_dir+0x106 – 4E400028 650C2041 2080200A 4CDF0500 N@.(e. A . .L_..

kill_dir+0x128 – 4E400029 245F6000 213448E7 C8302440 N@.)$_‘.!4HgH0$@

modlink+0xc – 4E400000 64084CDF 06006000 024E200A N@..d.L_..‘..N .

modload+0xc – 4E400001 64E44CDF 06006000 022A48E7 N@..ddL_..‘..*Hg

munlink+0x8 – 4E400002 245F6000 021648E7 60802040 N@..$_‘...Hg‘. @

munload+0x8 – 4E40001D 60000206 48E76080 22006600 N@..‘...Hg‘.“.f.

ebrk+0x42 – 4E400028 204A245F 650001BA 2D488BC6 N@.(J$_e..:–H.F

sbrk+0x14 – 4E400007 64000008 225F6000 01562D40 N@..d...“_‘..V–@

_srqmem+0x2 – 4E400028 650A2D40 8BCE200A 245F4E75 N@.(e.–@.N .$_Nu

srtmem+0x8 – 4E400029 245F6000 00F848E7 60804E40 N@.)$‘..xHg‘.N@

kill+0x4 – 4E400008 600000EC 48E76080 20407000 N@..‘..lHg‘. @p.

wait+0x8 – 4E400004 650000DE 24086700 00D64258 N@..e..^$.g..VBX

setpr+0x4 – 4E40000D 600000C2 48E76080 48E71C40 N@..‘..BHg‘.Hg.@

os9fork+0x36 – 4E400003 60044E40 00054CDF 02386000 N@..‘.N@..L_.8‘.

os9fork+0x3c – 4E400005 4CDF0238 60000056 48E76080 N@..L_.8‘..VHg‘.

getpid+0x4 – 4E40000C 6000004A 48E76080 4E40000C N@..‘..JHg‘.N@..

getuid+0x4 – 4E40000C 65000040 20016000 003848E7 N@..e..@ .‘..8Hg

setuid+0x6 – 4E40001C 6000002A 48E76080 41FA0012 N@..‘..*Hg‘.Az..

_sigint+0x10 – 4E400009 60000012 2001206E 8BD24E90 N@..‘... . n.RN.

_sigint+0x20 – 4E40001E 91C8C188 64062D41 800C70FF N@...HA.d.–A..p.

_exit+0x2 – 4E400006 DEADDEAD 003C0001 4E754E75 N@..^–^–.<..NuNu

Assembly Level Commands
Chapter 10

10-23

Display C Expression as Symbolic Expression

Syntax

sy[mbol] [<C_expr>]

Usage

Sy[mbol] displays the result of the expression as a symbolic expression.

If no <C_expr> is specified, SrcDbg will repeat the last
Sy[mbol] command.

Example

In the following example, where is forked with two parameters and
executed until line 91. Two machine instructions are traced to move the
address of filename into the register .d0. The Sy[mbol] command is then
used to display the symbolic expression of registers .d0 and .d1.

$ srcdbg where where.c /h0/usr/kathie fork “where”
Reading symbol file “where.dbg”.

where.c

Reading symbol file “where.stb”.

Context: where_cstart

SrcDbg: go 91 execute “where” until line 91
File: “where.c”

Context: where\read_dir_stuff\$blk0\$blk1

 91: if(!strcmp(p,filename)) puts(buf);

 ^

SrcDbg(STEP): t trace one machine instruction
dn: 00036022 00037884 00000003 00000003 00000015 00000001 00000003 00036022

an: 000E6BE0 00000000 00037884 0003601E 00036021 00037848 0003E000 00037820

pc: E6B9E cc: 00 (–––––)

read_dir_stuff+0x68 >2007 move.l d7,d0

SrcDbg(TRACE): <return> trace one machine instruction
dn: 00036022 00037884 00000003 00000003 00000015 00000001 00000003 00036022

an: 000E6BE0 00000000 00037884 0003601E 00036021 00037848 0003E000 00037820

pc: E6BA0 cc: 00 (–––––)

read_dir_stuff+0x6a >61001532 bsr.w strcmp

SrcDbg(TRACE): sy .d0 display symbolic expression of register “.d0”
where\inbuf+0x4

SrcDbg: sy .d1 display symbolic expression of register “.d1”
where_jmptbl+0xc04

SrcDbg:

Symbol

Assembly Level Commands
Chapter 10

10-24

Execute Machine Instruction

Syntax

t[race] [<number>]

Usage

T[race] executes the specified number of machine instructions. If
<number> is not specified, T[race] executes a single instruction.

After a T[race] command has been executed, SrcDbg displays the
following prompt:

SrcDbg(TRACE):

To continue “tracing” through a program, hit [Return] or re-enter the
T[race] command. If <number> was previously specified, it remains in
effect until a T[race] command with a different number (or no number)
is executed.

If a “branch to subroutine” is encountered while tracing through a
program, the subroutine is also traced through. To avoid tracing through
functions, use the Gostop command.

If a breakpoint is encountered while tracing through a program, execution
stops in the same manner as any execution command.

Trace

Assembly Level Commands
Chapter 10

10-25

Example

The following example traces one machine instruction, turns on the source
code display option and then traces two more instructions:

SrcDbg: trace execute one machine instruction
dn: 00036022 00037884 00000003 00000003 00000015 00000001 00000003 00036022

an: 000E6BE0 00000000 00036022 0003601E 00036021 00037848 0003E000 0003780C

pc: E80DA cc: 00 (–––––)

strcmp+0x6 >2641 movea.l d1,a3

SrcDbg(TRACE): option source show source code with assembly level locations
SrcDbg: trace 2

 28: read_dir_stuff(filename,pid,pipe,stout);

 ^

dn: 00036022 00037884 00000003 00000003 00000015 00000001 00000003 00036022

an: 000E6BE0 00000000 00036022 00037884 00036021 00037848 0003E000 0003780C

pc: E80DC cc: 00 (–––––)

strcmp+0x8 >600A bra.b strcmp+0x14

 28: read_dir_stuff(filename,pid,pipe,stout);

 ^

dn: 00036022 00037884 00000003 00000003 00000015 00000001 00000003 00036022

an: 000E6BE0 00000000 00036022 00037884 00036021 00037848 0003E000 0003780C

pc: E80E8 cc: 00 (–––––)

strcmp+0x14 >1012 move.b (a2),d0

SrcDbg:

Chapter

11

11-1

SrcDbg Syntax and Commands

srcdbg [–m=<mem>] <program> {<program arg>} [”]<[path redirection>[”]

Asm Asm displays the current register values and current machine
instruction. A period (.) has the same affect as Asm.

A[ssign] <C_expr> = <C_expr> A[ssign] sets the value of a program object.

B[reak] [<location_expr>] [:wh[en] <C_expr>] [:co[unt] <num>]

B[reak] sets a breakpoint at a specified line number, result of a
<C_expr> or upon a when <C_expr> becoming true.

C[hange] [<C_expr>] C[hange] changes bytes of memory starting at the result of
<C_expr>.

Changelong [<C_expr>] Cl [<C_expr>] Changelong changes longwords of memory starting at the result
of <C_expr>.

Changeword [<C_expr>] Cw [<C_expr>] Changeword changes words of memory starting at the result of
<C_expr>.

C[h]c [<scope_expr>] C[h]c changes the context for default name and location
resolution.

C[h]d <pathlist> C[h]d changes SrcDbg’s current data directory. This command
does not change the parent Shell’s current directory.

C[h]x <pathlist> C[h]x changes SrcDbg’s current execution directory. This
command does not change the parent Shell’s current execution
directory.

Con[text] [<scope_expr>] Con[text] displays the complete scope expression of an object.

Dil[ist] [<location_expr>] [: [<count>]]

Dil[ist] displays the current C source line and the assembly
code which maps to the current C source line starting at the
address specified by <location_expr>.

Syntax

Commands

SrcDbg Syntax and Commands
Chapter 11

11-2

Di[sasm] [<C_expr>] [: [<count>]] Di[sasm] disassembles and displays memory starting at the
address specified by <C_expr>. If <count> is specified, then
<count> machine lines will be disassembled and displayed. If
<count> is not specified, then sixteen machine lines will be
disassembled and displayed.

D[ump] [<C_expr>] [: [<count>] [<format>]]]

D[ump] returns a formatted display of the physical contents
starting at the address specified by <C_expr>. If <count> is
specified, then <count> lines of information will be displayed. If
<count> is not specified, then sixteen lines of information will be
displayed.

Fi[nd] [<name>] Fi[nd] displays all scope expressions found for <name>.

F[rame] [[±] <number>] F[rame] displays stack frame information. If no arguments are
specified, the name of each calling function, the location from
which it was called and the frame number are displayed. If
F[rame] is followed by <number>, the stack frame context will
be changed to <number>.

Fo[rk] [<program> [<program arg>] [”]<[path redirection>[”]]

Fo[rk] forks the specified program to begin a debugging
session. If no Fo[rk] arguments are specified, Fo[rk] uses the last
command arguments used in either the Fo[rk] command or the
SrcDbg command line.

G[o] [<location_expr>] [:dis[play]] G[o] begins program execution. If <location_expr> is specified,
the program will run until <location_expr> is reached. If “:dis” is
specified, each line of code executed is displayed.

Gostop [<number>] Gostop executes the specified number of machine
Gs [<number>] instructions in the current subroutine.

H[elp] H[elp] returns the help display.

I[nfo] [<scope>] I[nfo] returns information about specified program objects and
the current program location. If no argument is specified, I[nfo]
returns the current location of the program.

K[ill] [<watch expr>] {[,<breakpoint>] [,<watch expr>]}

K[ill] [<breakpoint>] {[,<breakpoint>] [,<watch expr>]}

K[ill] removes all specified breakpoints and watch expressions.
K[ill] uses SrcDbg notation for breakpoint and watch
expressions (b1, b2, w1, w2, ...).

Li[nk] <module_name> L[ink] links SrcDbg to <module_name> and places the module
address in register .r7.

SrcDbg Syntax and Commands
Chapter 11

11-3

L[ist] [<list arg> [,<list arg>]] L[ist] returns a source listing of the specified file or portion of
the file. A list argument may be a file name, line number or a
scope expression resulting in the following:

1. block number
2. function
3. line number

If a beginning line number is specified, a second line number
may be used to specify the ending line number (i.e. list 1 10).

Lo[cals] Lo[cals] displays the values of all local symbols.

L[o]g <pathlist> L[o]g writes SrcDbg commands to <pathlist>. The specified
L[o]g : off pathlist is relative to the user’s current data directory.

If “: off” is entered, the log file is closed.

Mf[ill][n] <begin> : <end> : <value> Mf[ill] fills bytes of memory in the address range from
<begin> to <end> with <value>. All arguments are <C_expr>’s.
[n] indicates that the fill will not respect byte boundaries.

Mfilllong[n] <begin> : <end> : <value> Mf[ill] fills longwords of memory in the address
Mfl[n] <begin> : end> : <value> range from <begin> to <end> with <value>. All arguments are

<C_expr>’s. [n] indicates that the fill will not respect longword
boundaries.

Mfillword[n] <begin> : <end> : <value> Mf[ill] fills words of memory in the address range from
Mfw[n] <begin> : <end> : <value> <beg1n> to <end> with <value>. All arguments are <C_expr>’s.

[n] indicates that the fill will not respect word boundaries.

Ms[earch][n] <begin> : <end> : <value> [: <mask>]

Ms[earch] searches bytes of memory from <begin> to <end> for
<value> and displays each line where <value> is found. All
arguments are <C_expr>’s. [n] indicates that the search will not
respect byte boundaries.

Msearchlong[n] <begin> : <end> : <value> [: <mask>]

Msl[n] <begin> : <end> : <value> [: <mask>]

Ms[earch] searches longwords of memory from <begin> to
<end> for <value> and displays each line where <value> is
found. All arguments are <C_expr>’s. [n] indicates that the
search will not respect longword boundaries.

Msearchword[n] <begin> : <end> : <value> [: <mask>]

Msw[n] <begin> : <end> : <value> [: <mask>]

Ms[earch] searches words of memory from <begin> to <end>
for <value> and displays each line where <value> is found. All
arguments are <C_expr>’s. [n] indicates that the search will not
respect word boundaries.

SrcDbg Syntax and Commands
Chapter 11

11-4

N[ext] [<number>] N[ext] executes the specified number of executable statements
of the program. If no number is specified, one statement is
executed. N[ext] executes functions as a single statement.

O[ption] {<options>} O[ption] allows the user to set a variety of display and
execution options.

P[rint] <C_expr> P[rint] returns the value of the specified C expression.

Q[uit] Q[uit] exits SrcDbg or aborts an interrupted function call.

Re[ad] [<pathlist>] Re[ad] reads SrcDbg commands from <pathlist>. The <pathlist>
is relative to the user’s current data directory. The L[o]g
command may be used to create the file referred to in <pathlist>.

R[eturn] [<number>] R[eturn] executes the program until the current function returns
to the calling function or a breakpoint is encountered. If a
number is specified, R[eturn] executes until it returns to the
specified number of callers above the current stack frame.

Se[tenv] <environment_name> <environment_definition>

Se[tenv] sets a shell-type environment variable for use by
SrcDbg and SrcDbg’s child processes. The arguments
<environment_name> and <environment_definition> are strings
that are stored in the environment list by the current shell.

S[tep] [<number>] S[tep] executes the specified number of executable statements
of the program. If no number is specified, one statement is
executed.

Shell [shell command] Shell forks a shell. If a Shell command is specified, the
command is executed and control returns to SrcDbg.

Sy[mbol] [<C_expr>] Sy[mbol] displays the result of the expression as a symbolic
expression.

T[race] [<number>] T[race] executes the specified number of machine instructions.
If <number> is not specified, T[race] executes a single
instruction.

Unse[tenv] Unse[tenv] deletes an environment variable from the
environment list.

W[atch] <C_expr> W[atch] monitors the value of specified C expressions as the
program is executed. Each watch expression is evaluated at each
statement executed. The expression is displayed with its value
each time the value changes.

? Same as the Help command.

$ Same as the Shell command.

Appendix

A

A-1

Error Message Descriptions

This appendix contains a list of C compiler and Preprocessor generated
error messages, their probable causes and cross–references to the K & R
Appendix A section number (in parentheses) to see for more specific
information. There are four types of error messages. Each error message
explanation includes the type of error message:

(W) Warning:
This is an informational message that indicates a potential deviation from
accepted semantics or constraints. The output program may or may not
provide expected results. An attempt to process the remainder of the
program will be made.

(E) Error:
A violation of a semantics or syntax rule has occurred. It is not possible to
create an executable program with such an error. An attempt to process the
remainder of the program will be made.

(F) Fatal Error:
A message of this type indicates that an environment constraint has been
exceeded. Such things as disk read or write errors, no more memory for
the process, input buffer overflow, etc. are environment constraint errors.
Processing is immediately halted as it is not possible to continue.

(C) Compiler Error:
The compiler has many built–in self checks to verify internal operation.
This type of message usually indicates an error in the compiler.
Sometimes this message is caused by an unusual program element that the
compiler did not anticipate. An alternative method to express the program
element may work around the problem. In any case, try to isolate the
offending program section and submit it to your local Allen-Bradley sales
representative or contact Allen-Bradley Software Support Services.
Processing of the remainder of the program may or may not be possible,
depending on the nature of the problem.

Error Message Overview

Error Message Description
Appendix A

A-2

The following table contains error messages that can be generated by the C
compiler:

Compiler Error Messages: Description

already a local variable (E): Variable has already been declared at the current block level.

argument error (E): Function argument declared as type function. Pointers to functions are
allowed.

argument storage (E): Function arguments may only be declared as storage class register.

bad character (E): A character not in the C character set (probably a control character) was
encountered in the source file.

both must be integral(E): >> and << operands cannot be FLOAT or DOUBLE.

break error (E): The break statement is allowed only inside a while, do, for or switch.

can’t determine size (E): The size of the object cast cannot be determined.

can’t initialize unions (E): Unions cannot appear as the object of an initializer.

can’t open strings file (E): A temporary file for constant string storage could not be opened. Likely cause
is no permission in the directory or no room left on device.

can’t take address (E): & operator not allowed on a register variable. Operand must otherwise be an
lvalue.

can’t take size of bitfield (E): The size of operator cannot be applied to bit fields.

cannot cast as function or array (E): Type result of cast cannot be FUNCTION or ARRAY.

cannot evaluate size (E): Could not determine size from declaration or initializer.

cannot initialize (E): Storage class or type does not allow variable to be initialized.

cannot use void (E): No operation can be performed on a void.

case value too large for type (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

compiler tag validation (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

compiler trouble (C): Compiler detected something it couldn’t handle. Try compiling the program
again. If this error still occurs, contact your local Allen-Bradley sales
representative or Allen-Bradley Software Support Services.

condition needed (E): While, do, for, switch and if statements require a condition expression.

constant expression required (E): Initializer expressions for static or external variables cannot reference
variables. They may, however, refer to the address of a previously declared
variable. This installation allows no initializer expressions unless all operands
are of type INT or CHAR.

Variables are not allowed for array dimensions or cases.

constant operator (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

constant overflow (E): Input numeric constant was too large for the implied or explicit type.

continue error (E): The continue statement is allowed only inside a while, do, or for block.

C Compiler Error Messages

Error Message Descriptions
Appendix A

A-3

Compiler Error Messages: Description

declaration mismatch (E): This declaration conflicts with a previous one. This is typically caused by
declaring a function to return a non–integer type after a reference has been
made to the function. Depending on the declaration block’s line structure, this
error may be reported on the line following the erroneous declaration.

degenerative comparison with zero
(W):

A comparison of the form u>=0 or u<0, where u is unsigned, is being done.

deref (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

deref storage (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

dimension mismatch (E): An array has been declared twice, with conflicting bounds.

divide by zero (E): Divide by zero occurred when evaluating a constant expression.

dumpstrings (F): An error occurred during processing of the strings file. Likely cause is no more
room on the output device.

duplicate cases (E): All constant values used as a switch statement case must be unique.

duplicate member name (E): A member identification name in a struct/union declaration has already
appeared in this struct/union.

duplicate struct/union tags (E): The tag name of this struct/union has already been defined at the current block
level.

error writing assembly code file (E): An error occurred when writing the output file. Likely cause is no room left on
the output device.

? expected (E): ? is any character that was expected to appear here. Missing semicolons or
braces cause this error.

expression missing (E): An expression is required here.

expression too complex (C): This expression could not be compiled by the compiler. If simplifying the
expression (using temporaries) does not help, contact your local Allen-Bradley
sales representative or Allen-Bradley Software Support Services.

expression with little effect (W): This expression calculates a value that is never used.

function header missing (E): Statement or expression encountered outside a function. Typically caused by
mismatched braces.

function type error (E): A function cannot be declared as returning an array, function, struct or union.

function unfinished (E): End–of–file encountered before the end of function definition.

gen: unk opr (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

identifier missing (E): Identifier name required here but none was found.

identifier name found in a cast (E): Identifier name found in a cast. Only a cast types are allowed.

illegal declaration (E): Declarations are allowed only at the beginning of a block.

illegal pointer/integer combination
(W):

Mixing pointer and integer types may result in non–portable code.

illegal type combination (E): The operators for the indicated operator do not have compatible types.

input line too long (F): The source input line that was read is too long. The maximum length of a
source input line is 512 characters.

Error Message Description
Appendix A

A-4

Compiler Error Messages: Description

invalid enumeration constant value
(E):

Explicit values for enumerated type constants must be constant integral
expressions.

Invalid bit field type (E): Only int and unsigned are permissible types for bit fields.

invalid bit field size (E): The width of a bit field must be a constant integral expression between 1 and
32.

label ’<label>’ undefined (E): Goto label not defined in the current function.

label ’<label>’ unused (W): The named label was defined but never referenced.

label required (E): The goto statement requires a label identifier as an operand.

lvalue required (E): Left side of assignment must be able to be stored into. Array names,
functions, etc. are not lvalues.

multiple defaults (E): Only one default statement is allowed in a switch block.

multiple definition (E): Identifier name was declared more than once in the same block level.

must be integral (E): Type of object required here must be type int, char or pointer.

named twice (E): Names in a function parameter list may appear only once.

no ’if’ for ’else’ (E): Else statement found with no matching if. This is typically caused by extra or
missing braces and/or semicolons.

no switch statement (E): Case statements can only appear within a switch block.

not a function (E): Primary in expression is not type “function returning...”. If this is really a
function call, the function name was declared differently elsewhere.

not a member of this struct/union
(W):

The identifier given as the member name is not a member of the declared
struct/union aggregate type.

not an argument (E): Name does not appear in the function parameter list.

operand expected (E): Unary operators require one operand, binary operators two. This is typically
caused by misplaced parentheses, casts or operators.

operands have incompatible types
(E):

The operands for the indicated operator do not have compatible types.

out of memory (F): Compiler dynamic memory overflow. The compiler requires dynamic memory
for symbol table entries, block level declarations and code generation. Three
main factors affect this memory usage. Permanent declarations (those
appearing on the outer block level (used in include files)) must be reserved
from the dynamic memory for the duration of the compilation of the file. Each {
causes the compiler to perform a block level recursion which may involve
pushing down previous declarations which consume memory. Auto class
initializers require saving expression trees until past the declarations which
may be very memory–expensive if they exist. Avoiding excessive
declarations, both permanent and inside compound statement blocks,
conserves memory. If this error occurs on an auto initializer, try initializing the
value in the code body.

pointer mismatch (E): Pointers refer to different types. Use a cast if required.

pointer or integer required (E): A pointer (of any type) or integer is required to the left of the –> operator.

pointer required (E): Pointer operand required with unary * operator.

pointer type mismatch (W): Mixing pointer types may not allow portability of code.

possible degenerate assignment in
test (W):

This assignment in a conditional assignment in test expression may actually
be a bug. Note the classic case:

while(c = getchar() != EOF).
It does not really behave as one might expect at first glance.

primary expected (E): Primary expression required here.

Error Message Descriptions
Appendix A

A-5

Compiler Error Messages: Description

reg free (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

rel op (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

’return;’ in non–void function (W): A non–value returning return statement was found in a function returning a
value of type other than void.

return value type mismatch (W): The type of the expression returned by a return statement does not match the
type of the declared function.

should be NULL (E): Second and third expression of ?: conditional operator cannot be pointers to
different types. If both are pointers, they must be of the same type or one of
the two must be null.

**** STACK OVERFLOW **** (F): Compiler stack has overflowed. Most likely cause is very deep block–level
nesting.

storage error (E): Reg and auto storage classes may only be used within functions.

struct syntax, expecting brace (E): Brace, comma, etc. is missing in a struct declaration.

struct or union inappropriate (E): Struct or union cannot be used in this context.

struct/union size exceeds 32k (E): The total size of a struct or union cannot exceed 32767 bytes.

struct/union member required (E): The identifier on the right side of the arrow (–>) or period (.) operator must be
a struct/union member identifier name.

struct/union object required (E): The primary expression (left side) of the period (.) operator must be a
struct/union object.

struct/union pointer mismatch (W): Mixing struct/union pointer types may not allow portability of code.

struct/union pointer required (E): The primary expression (left side) of the arrow (–>) operator must be a
struct/union pointer.

struct/union type is not allowed (E): A struct or union type is not allowed as an operand for the given operation.

syntax error (E): Expression, declaration or statement is incorrectly formed.

syntax misplaced arg declaration
list (E):

An argument declaration list is improperly placed in a function declarator.

third expression missing (E): A question mark (?) must be followed by a colon (:) with expression. This error
may be caused by unmatched parentheses or other errors in the expression.

too long (E): Too many characters provided in a string initializing a character array.

too many braces (E): Unmatched or unexpected braces encountered processing an initializer.

too many elements (E): More data items supplied for aggregate level in initializer than members of the
aggregate.

type expected (E): A type name was expected, but not found.

typedef not a variable (E): Typedef type name cannot be used in this manner.

undeclared identifier (E): No declaration exists at any block level for this identifier.

undefined structure (E): Union or struct declaration refers to an undefined structure name.

undefined struct/union tag
referenced (E):

A struct or union object was referenced tag but has not yet been defined.A
struct or union object was referenced tag but has not yet been defined.

uregfree (C): Internal compiler error. If this message is reproducible, try to isolate the
problem and and contact your local Allen-Bradley sales representative or
Allen-Bradley Software Support Services.

Error Message Description
Appendix A

A-6

Compiler Error Messages: Description

unterminated character constant
(E):

Unmatched ’ (character delimiters).

unterminated string (E): Unmatched “ (string delimiters).

while expected (E): No while found for do statement.

Error Message Descriptions
Appendix A

A-7

The following table contains error messages that can be generated by the
OS-9 Preprocessor:

Preprocessor Error Message: Description

#if nesting too deep (E): The maximum nesting for #if/#ifdef directives is 32 levels.

error writing output file (F): An error occurred writing the output file. This is commonly caused by running
out of space on the output storage device.

illegal #if macro name (E): An illegal identifier was found in a #if/#ifdef directive.

illegal ’#’ (E): An illegal directive was found on a pound sign (#) preprocessor line.

illegal macro name (E): An illegal identifier was found during macro definition.

incorrect include file (E): The file name given in an #include directive must be delimited by either double
quotes (“ ”) or angle brackets (< >).

macro arguments required (E): This macro was defined with arguments, but none were given when called.

macro definition error (E): A syntax error was found during a macro definition. Macro dummy arguments
must be a list of valid identifiers enclosed in parentheses. White space is
required after the defining parenthesis.

missing #endif (E): The end of the current file was reached and a pending #if/#ifdef or #else was
in effect.

no #if for #else (E): An #else directive was encountered without a corresponding #if/#ifdef.

out of memory (E): No more memory is available to continue processing.

redefined macro (W): The indicated macro name has already been defined. Use #undef <name>
(carefully) if it is intended to redefine a macro name.

source file read error (F): An error occurred reading the input source file.

source file too long (F): The maximum length of an input line is 512 characters.

too few macro arguments (E): A macro was called without enough arguments to match the macro definition.

too many #endifs (E): An #endif directive was encountered before a corresponding #if/#ifdef.

too many macro arguments (E): A macro was called with more arguments than given in the macro definition.

Preprocessor Error
Messages

With offices in major cities worldwide
WORLD
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (1) 414 382-2000
Telex: 43 11 016
FAX: (1) 414 382-4444

EUROPE/MIDDLE
EAST/AFRICA
HEADQUARTERS
Allen-Bradley Europe B.V.
Amsterdamseweg 15
1422 AC Uithoorn
The Netherlands
Tel: (31) 2975/43500
Telex: (844) 18042
FAX: (31) 2975/60222

ASIA/PACIFIC
HEADQUARTERS
Allen-Bradley (Hong Kong)
Limited
Room 1006, Block B,
Sea View Estate
28 Watson Road
Hong Kong
Tel: (852) 887-4788
Telex: (780) 64347
FAX: (852) 510-9436

CANADA
HEADQUARTERS
Allen-Bradley Canada
Limited
135 Dundas Street
Cambridge, Ontario N1R
5X1
Canada
Tel: (1) 519 623-1810
FAX: (1) 519 623-8930

LATIN AMERICA
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (1) 414 382-2000
Telex: 43 11 016
FAX: (1) 414 382-2400

As a subsidiary of Rockwell International, one of the world’s largest technology
companies — Allen-Bradley meets today’s challenges of industrial automation with over
85 years of practical plant-floor experience. More than 11,000 employees throughout the
world design, manufacture and apply a wide range of control and automation products
and supporting services to help our customers continuously improve quality, productivity
and time to market. These products and services not only control individual machines but
integrate the manufacturing process, while providing access to vital plant floor data that
can be used to support decision-making throughout the enterprise.

Publication 1771-6.5.104 May 1993
Supersedes 1771-6.5.104 September 1992

PN 955114-96
Copyright 1993 Allen-Bradley Company, Inc. Printed in USA

	1771-6.5.104, OS-9 C Language User Manual
	Inside Cover
	Acknowledgements
	Copyright and Revision History
	Disclaimer
	Reproduction Notice
	Trademarks

	Preface - Introduction
	SRCDBG 2.0 Caveats
	Installing and Running the Compiler
	Compiler Implementation
	Compiler Organization
	Using the Termcap Library
	The C Standard Library
	Overview of SrcDbg
	Debugger Control Commands
	Data Manipulation Command
	System Commands
	Assembly Level Commands
	SrcDbg Syntax and Commands
	Error Codes

	Table of Contents
	1 - Installing and Running the Compiler
	Executable Files
	Library Files
	Definition Files
	Library and Definition File Directory Searching
	Command Lines and the C Executive
	Compiler Options
	Example Command Lines
	Math Library and C Library Selection Options
	Notes

	2 - Compiler Implementation
	Data Representation
	Register Variables
	Access To Command Line Parameters (Argc, Argv, Envp)
	End- of- Line Character
	Implementation- Dependent Variances
	Enhancements and Extensions
	System Calls and the Standard Library

	3 - Compiler Organization
	Compiler Organization

	4 - Using The Termcap Library
	Using the Termcap Library

	5 - The C Standard Library
	The C Standard Library
	_atou()
	_cmpnam()
	_cpymem()
	_errmsg()
	_ev_creat()
	_ev_delete()
	_ev_info()
	_ev_link()
	_ev_pulse()
	_ev_read()
	_ev_set()
	_ev_setr()
	_ev_signal()
	_ev_unlink()
	_ev_wait()
	_ev_waitr()
	_exit()
	_freemin()
	_get_module_dir()
	_get_process_desc()
	_get_process_table()
	_get_sys()
	_gs_devn()
	_gs_eof()
	_gs_gfd()
	_gs_opt()
	_gs_pos()
	_gs_rdy()
	_gs_size()
	_julian()
	_Icalloc()
	_lfree()
	_Imalloc()
	_Irealloc()
	_mallocmin()
	_mkdata_module()
	_parsepath()
	_prgname()
	_prsnam()
	_setcrc()
	_setsys()
	_srqmem()
	_srtmem()
	_ss_attr()
	_ss_dcoff()
	_ss_dcon()
	_ss_dsrts()
	_ss_enrts()
	_ss_lock()
	_ss_opt()
	_ss_pfd()
	_ss_rel()
	_ss_rest()
	_ss_size()
	_ss_ssig()
	_ss_tiks()
	_ss_wtrk()
	_strass()
	_sysdate()
	_sysdbg()
	_tolower()
	_toupper()
	abs()
	access()
	acos()
	alm_atdate()
	alm_atjul()
	alm_cycle()
	alm_delete()
	alm_set()
	asctime()
	asin()
	atan()
	atof()
	atoi()
	atol()
	attach()
	calloc()
	ceil()
	chain(), chainc()
	chdir()
	chmod()
	chown()
	chxdir()
	cleareof()
	clearerr()
	clock()
	close()
	closedir()
	cos()
	crc()
	creat()
	create()
	ctime()
	detach
	difftime()
	dup()
	ebrk()
	exit()
	exp()
	fabs()
	fclose()
	fdopen()
	feof()
	ferror()
	fflush()
	fgetc()
	fgets()
	fileno()
	findnstr()
	findstr()
	floor()
	fopen()
	fprint()
	fputs()
	fread()
	free()
	freemem()
	freopen()
	frexp()
	fscanf()
	fseek()
	ftell()
	fwrite()
	getc(), getchar()
	getenv()
	getime()
	getpid()
	gets()
	getstat()
	getuid()
	getw()
	gmtime()
	hypot()
	ibrk()
	index()
	intercept()
	isalnum()
	isalpha()
	isascii()
	iscntrl()
	isdigit()
	islower()
	isprint()
	ispunct()
	isspace()
	isupper()
	isxdigit()
	kill
	Idexp()
	localtime()
	log()
	log10()
	longjmp()
	lseek()
	makdir()
	make_module()
	malloc()
	memchr()
	memcmp()
	memcpy
	memmove()
	memset()
	mknod()
	mktemp()
	mktime()
	modcload()
	modf()
	modlink()
	modload()
	modloadp()
	munlink()
	munload()
	open()
	opendir()
	os9exec()
	os9fork(), os9forkc()
	pause
	pffinit()
	pflinit()
	pow()
	prerr()
	printf()
	putc(), putchar()
	puts()
	putw()
	qsort()
	read(), readln()
	readdir()
	realloc()
	rewind()
	rewinddir()
	rindex()
	sbrk()
	scanf()
	seekdir()
	setbuf()
	setime()
	setjmp()
	setpr()
	setstat()
	setuid()
	sigmask()
	sin()
	sleep()
	sprintf()
	sqrt()
	srqcmem()
	sscanf()
	stacksiz()
	strcat()
	strcmp()
	strcpy
	strhcpy()
	strlen()
	strncat()
	strncmp()
	strncpy()
	strtod()
	strtol(), strtoul()
	system()
	tan()
	telldir()
	tgetent()
	tgetflag()
	tgetnum()
	tgetstr()
	tgoto
	time()
	toascii()
	tolower()
	toupper()
	tputs()
	tsleep()
	ungetc()
	unlink()
	unlinkx()
	wait()
	write(), writeln()

	6 - Overview of SrcDbg
	Overview of SrcDbg
	C Compiler Revision Requirements
	Setting the Environment
	The ò.dbgõ and ò.stbõ Symbol Files
	Invoking SrcDbg
	SrcDbg Help
	Exiting SrcDbg
	SrcDbg Command Syntax
	SrcDbg Scope
	Scope Expressions
	Line Number Expressions
	C Expressions
	Location Expressions
	Command Line Notes
	Example Tutorial Program
	Notes

	7 - Debugger Control Commands
	Fork
	Go
	Step
	Name
	Return
	Break
	Watch
	Kill
	Log
	Option
	Read

	8 - Data Manipulation Commands
	List
	Info
	Frame
	Print
	Assign
	Chc
	Context
	Find
	Locals

	9 - System Commands
	Chd
	Shell
	Help
	Quit
	Chx
	Setenv
	Unsetenv

	10 - Assembly Level Commands
	Assembly Level Display Information
	Instruction Disassembly Memory Display
	Floating Point Memory Displays
	Asm
	Change
	Dilist
	Disasm
	Dump
	Gostop
	Link
	MFill
	Msearch
	Symbol
	Trace

	11 - SrcDbg Syntax and Commands
	Syntax
	Commands

	A - Error Message Descriptions
	Error Message Overview
	C Compiler Error Messages
	Preprocessor Error Messages

	Back Cover

