0OS-9 File
System

Disk File Organization

RBF supports a tree-structured file system. The physical disk organization is designed for efficient use of
disk space, resistance to accidental damage, and fast file access. The system also has the advantage of
relative simplicity.

Basic Disk Organization

RBF supports logical sector sizes in integral binary multiples from 256 to 32768 bytes. If you use a disk
system that cannot directly support the logical sector size (for example, 256 byte logical sectors on a 512-
byte physical sector disk), the driver module must divide or combine sectors as required to simulate the
required logical size.

Many disks are physically addressed by track number, surface number, and sector number. To eliminate
hardware dependencies, OS-9 uses a logical sector number (LSN) to identify each sector without regard
to track and surface numbering.

It is the responsibility of the disk driver module or the disk controller to map logical sector numbers to
track/surface/sector addresses. OS-9’s file system uses LSNs from 0 to (n-1), where “n” is the total
number of sectors on the drive.

NOTE: All sector addresses discussed in this section refer to LSNs.

0S-9 Technical Manual 7-1

Basic Disk Organization 0S-9 File System

The format utility initializes the file system on blank or recycled media by creating the track/surface/sector
structure. format also tests the media for bad sectors and automatically excludes them from the file
system.

Every OS-9 disk has the same basic structure. An identification sector is located in logical sector zero
(LSN 0). It contains a description of the physical and logical format of the storage volume (disk media).
A disk allocation map usually begins in logical sector one (LSN 1). This indicates which disk sectors are
free for use in new or expanded files. A root directory of the volume begins immediately after the disk
allocation map.

7-2 0S-9 Technical Manual

0S-9 File System Identification Sector

Identification Sector

LSN zero always contains the identification sector (see Figure 7-1). It describes the physical format of the
disk, the size of the allocation map, and the location of the root directory. Italso contains the volume name,
date and time of creation, etc. If the disk is a bootable system disk it also has the starting LSN and size of
the OS9Boot file.

Addr Size Name Description
$00 3 DD_TOT Total number of sectors on media
$03 1 DD_TKS Track size in sectors
$04 2 DD_MAP Number of bytes in allocation map
$06 2 DD_BIT Number of sectors/bit (cluster size)
$08 3 DD_DIR LSN of root directory file descriptor
$0B 2 DD_OWN Owner ID
$0D 1 DD _ATT Attributes
$0E 2 DD_DSK Disk ID
$10 1 DD _FMT Disk Format; density/sides
Bit O: 0 =single side
1 = double side
Bit 1: 0 = single density (FM)
1 = double density (MFM)
Bit 2: 1 = double track (96 TP1/135 TPI)
Bit 3: 1 = quad track density (192 TPI)
Bit 4: 1 = octal track density (384 TPI)
$11 2 DD_SPT Sectors/track (two byte value DD_TKS)
$13 2 DD_RES Reserved for future use
$15 3 DD_BT System bootstrap LSN
$18 2 DD_BSzZ Size of system bootstrap
$1A 5 DD _DAT Creation date
$1F 32 DD_NAM Volume name
$3F 32 DD_OPT Path descriptor options
$5F 1 Reserved
$60 4 DD_SYNC Media integrity code
$64 4 DD_MapLSN Bitmap starting sector number (0=LSN 1)
$68 2 DD_LSNSize Media logical sector size (0=256)
$6A 2 DD_VersID Sector 0 Version ID

0S-9 Technical Manual 7-3

Allocation Map 0S-9 File System

Allocation Map

The allocation map shows which sectors are allocated to files and which are free for future use.
DD_MapLSN specifies the allocation map start address, which is usually 1. If this field is 0, assume an
address of 1. The size of the map varies according to how many bits are needed. Each bit in the allocation
map represents a cluster on the disk. If a bit is set, the cluster is considered to be in use, defective, or non-
existent. DD_MAP (see Figure 7-1) specifies the actual number of bytes used in the map.

NOTE: The DD_Bit variable specifies the number of sectors per cluster. The number of sectors per
cluster is always an integral power of two.

The format utility sets the size of the allocation map depending on the size and number of sectors per
cluster. You can select the number of sectors per cluster on the command line when invoking the format
utility.

Root Directory

The root directory file is the parent directory of all other files and directories on the disk. It is the directory
accessed using the physical device name (such as/d1). Usually, it immediately follows the allocation map.
The location of the root directory file descriptor is specified in DD_DIR (see Figure 7-1).

Basic File Structure

0S-9 uses a multiple-contiguous-segment type of file structure. Segments are physically contiguous
sectors that store the file’s data. If all the data cannot be stored in a single segment, additional segments
are allocated to the file. This may occur if a file is expanded after creation, or if a sufficient number of
contiguous free sectors is not available.

The OS-9 segmentation method was designed to keep a file’s data sectors in as close physical proximity
as possible to minimize disk head movement. Frequently, files (especially small files) have only one
segment. This results in the fastest possible access time. Therefore, it is good practice to initialize the size
of a file to the maximum expected size during or immediately after its creation. This allows OS-9 to
optimize its storage allocation.

All files have a sector called a file descriptor sector, or FD. FD contains a list of the data segments with
their starting LSNs and sizes. This is also where information such as file attributes, owner, and time of
last modification is stored. Only the system uses this sector; it is not directly accessible by the user. The
table in Figure 7-2 describes the contents of a file descriptor.

7-4 0S-9 Technical Manual

0S-9 File System Segment Allocation

NOTE: Offset refers to the location of a field, relative to the starting address of the file descriptor. Offsets
are resolved in assembly code by using the names shown here and linking the module with the relocatable
library: sys.l or usr.l.

Offset Size Name Description

$00 1 FD_ATT File Attributes: DSPE PWPREWR
$01 2 FD_OWN Owner’s User ID

$03 5 FD_DAT Date Last Modified: Y MDH M

$08 1 FD_LNK Link Count

$09 4 FD_SIZ File Size (number of bytes)

$0D 3 FD_CREAT Date Created: Y M D

$10 240 FD_SEG Segment List: see below

Figure 7-2: File Descriptor Content Description

The attribute byte (FD_ATT) contains the file permission bits. Bit 7 is set to indicate a directory file, bit
6 indicates a non-sharable file, bit 5 indicates public execute, bit 4 indicates public write, etc.

The date last modified (FD_DAT) changes when a file is opened in write or update mode. This is useful
for making date-dependant backups.

The segment list (FD_SEG) consists of a series of five-byte entries, continuing until the end of the logical
sector. For 256-byte sectors, this results in 48 entries. These entries have the size and address of each
block of storage used by the file in logical order. Each entry has a three-byte logical sector number that
specifies the beginning of the block and a two-byte block size (in sectors). Unused segments must be zero.

The RBF file manager maintains the file pointer, logical end-of-file, etc., used by application software and
converts them to the logical disk sector number using the data in the segment list.

You do not have to be concerned with physical sectors. OS-9 provides fast random access to data stored
anywhere in the file. All the information required to map the logical file pointer to a physical sector
number is packaged in the file descriptor sector. This makes OS-9’s record-locking functions very
efficient.

Segment Allocation

Each device descriptor module has a value called a segment allocation size. It specifies the minimum
number of sectors to allocate to a new segment. The goal is to avoid a large number of tiny segments when
a file is expanded. If your system uses a small number of large files, this field should be set to a relatively
high value, and vice versa.

0S-9 Technical Manual 7-5

Directory File Format 0S-9 File System

When afile is created, it has no data segments allocated to it. Write operations past the current end-of-file
(the first write is always past the end-of-file) cause allocation of additional sectors to the file. Subsequent
expansions of the file are also generally made in minimum allocation increments.

NOTE: An attempt is made to expand the last segment before attempting to add a new segment.

If not all of the allocated sectors are used when the file is closed, the segment is truncated and any unused
sectors are de-allocated in the bitmap. This strategy does not work very well for random-access data bases
that expand frequently by only a few records. The segment list is rapidly filled with small segments. A
provision has been added to prevent this from being a problem.

If a file (opened in write or update mode) is closed when it is not at end-of-file, the last segment of the file
is not truncated. To be effective, all programs that deal with the file in write or update mode must ensure
that they do not close the file while at end-of-file, or the file will lose any excess space it may have. The
easiest way to ensure this is to do a seek(0) before closing the file. This method was chosen because
random access files are frequently somewhere other than end-of-file, and sequential files are almost
always at end-of-file when closed.

Directory File Format

Directory files have the same physical structure as other files with one exception: RBF must impose a
convention for the logical contents of a directory file.

A directory file consists of an integral number of 32-byte entries. The end of the directory is indicated by
the normal end-of-file. Each entry consists of a field for the file name and a field for the file’s file
descriptor address.

The file name field (DIR_NM) is 28 bytes long (bytes 0-27) and has the sign bit of the last character of the
file name set. The first byte is set to zero, indicating a deleted or unused entry. The file descriptor address
field (DIR_FD) is three bytes long (bytes 29-31) and is the LSN of the file’s FD sector. Byte 28 is not
used and must be zero.

When a directory file is created, two entries are automatically created: the dot (.) and double dot (..)
directory entries. These specify the directory and its parent directory, respectively.

7-6 0S-9 Technical Manual

0S-9 File System Raw Physical I/O on RBF Devices

Raw Physical I/O on RBF Devices

You can open an entire disk as one logical file. This allows access of any byte(s) or sector(s) by physical
address without regard to the normal file system. This feature is provided for diagnostic and utility
programs that must be able to read and write to ordinarily non-accessible disk sectors.

A device is opened for physical 1/0 by appending the at (@) character to the device name. For example,
you can open the device /d2 for raw physical 1/0 under the pathlist /d2@.

Standard open, close, read, write, and seek system calls are used for physical 1/0. A seek system call
positions the file pointer to the actual disk physical address of any byte. To read a specific sector, perform
a seek to the address computed by multiplying the LSN by the logical sector size of the media. You can
find the logical sector size in the PD_SctSiz field of the path descriptor (if 0, assume a value of 256 bytes).
For example, on 1024-byte logical media, to read sector 3, perform a seek to address 3072 (1024 * 3),
followed by a read system call requesting 1024 bytes.

If the number of sectors per track of the disk is known or read from the identification sector, any
track/sector address can be readily converted to a byte address for physical 1/0.

WARNINGS: Use extreme care with the special “@ file in update mode. To keep system overhead low,
record locking routines only check for conflicts on paths opened for the same file. The “@” file is
considered different from any other file, and therefore only conforms to record lockouts with other users
of the “@ file.

Improper physical 1/0 operations can corrupt the file system. Take great care when writing to a raw
device. Physical 1/0O calls also bypass the file security system. For this reason, only super-users are
allowed to open the raw device for write permit. Non-super-users are only permitted to read the
identification sector (LSN 0) and the allocation bitmap. Attempts to read past this return an end-of-file
error.

0S-9 Technical Manual 7-7

Record Locking 0S-9 File System

Record Locking

Record locking is a general term that refers to preserving the integrity of files that more than one user or
process can access. OS-9 record locking is designed to be as invisible as possible to application programs.

Most programs may be written without special concern for multi-user activity.

Simply stated, record locking involves:
¢ Recognizing when a process is trying to read a record that another process may be modifying.
i Deferring the read request until the record is safe.

This is referred to as conflict detection and prevention. RBF record locking also handles non-sharable files
and deadlock detection.

Record Locking and Unlocking

Conflict detection must determine when a record is in the process of being updated. RBF provides true
record locking on a byte basis. A typical record update sequence is:

0S9 I$Read program reads record RECORD IS LOCKED
program updates record

0S89 I1$Seek reposition to record
0S9 I1$Write record is rewritten RECORD IS RELEASED

When a file is opened in update mode, ANY read causes the record to be locked out because RBF does not
know in advance if the record will be updated. The record remains locked until the next read, write, or
close occurs. Reading files that are opened in read or execute modes does not cause record locking to
occur because records cannot be updated in these two modes.

A subtle but nasty problem exists for programs that interrogate a data base and occasionally update its data.
When a user looks up a particular record, the record could be locked out indefinitely if the program
neglects to release it. The problem is characteristic of record locking systems; you can avoid it by careful
programming.

NOTE: Only one portion of a file may be locked out at one time. If an application requires more than
one record to be locked out, multiple paths to the same file may be opened with each path having its own
record locked out. RBF notices that the same process owns both paths and keeps them from locking each
other out. Alternatively, the entire file may be locked out, the records updated, and the file released.

7-8 0S-9 Technical Manual

0S-9 File System Non-Sharable Files

Non-sharable Files

You may use file locking when an entire file is considered unsafe for use by more than one user. On rare
occasions, you need to create a non-sharable file. A non-sharable file can never be accessed by more than
one process at a time. Make a file non-sharable by setting the single user (S) bit in the file’s attribute byte.
You can set the bit when you create the file, or later using the attr utility.

If the single-user bit is set, only one process may open the file at a time. If another process attempts to
open the file, error (#253) is returned.

More commonly, a file needs to be non-sharable only during the execution of a specific program.
Accomplish this by opening the file with the single-user bit set in the access mode parameter.

For example, if a file is opened as a non-sharable file, when it is being sorted it is treated as though it had
a single-user attribute. If the file was already opened by another process, an error (#253) is returned.

A necessary quirk of non-sharable files is that they may be duplicated using the I$Dup system call, or
inherited. A non-sharable file could therefore actually become accessible to more than one process at a
time. Non-sharable only means that the file may be opened once. It is usually a very bad idea to have two
processes actively using any disk file through the same (inherited) path.

End of File Lock

An EOF lock occurs when the user reads or writes data at the end of file. The user keeps the end of file
locked until a read or write is performed that is not at the end of the file. EOF lock is the only time that a
write call automatically causes lock out of any part of the file. This avoids problems that could occur when
two users try to simultaneously extend a file.

An extremely useful side effect occurs when a program creates a file for sequential output. As soon as the
file is created, EOF lock is gained, and no other process is able to pass the writer in processing the file.

For example, if you redirect an assembly listing to a disk file, a spooler utility can open and begin listing
the file before the assembler has written even the first line of output. Record locking always keeps the
spooler one step behind the assembler, making the listing come out as desired.

Deadlock Detection

A deadlock can occur when two processes attempt to gain control of the same two disk areas
simultaneously. If each process gets one area (locking out the other process), both processes are stuck
permanently, waiting for a segment that can never become free. This situation is a general problem that
is not restricted to any particular record locking method or operating system.

0S-9 Technical Manual 7-9

Deadlock Detection 0S-9 File System

If this occurs, a deadlock error (#254) is returned to the process that caused it to be detected. It is easy to
create programs that, when executed concurrently, generate lots of deadlock errors. The easiest way to
avoid them is to access records of shared files in the same sequences in all processes that may be run
simultaneously. For example, always read the index file before the data file, never the other way around.

When a deadlock error does occur, it is not sufficient for a program to simply re-try the operation in error.
If all processes used this strategy, none would ever succeed. At least one process must release its control
over a requested segment for any to proceed.

7-10 0S-9 Technical Manual

0S-9 File System

Record Locking Details for I/0 Functions

Record Locking Details for I1/0O Functions

Open/Create:

Read/ReadLine:

Write/WriteLine:

Seek:

SetStatus:

The most important guideline to follow when opening files is: Do not open a file for
update if you only intend to read. Files open for read only do not cause records to be
locked out, and they generally help the system to run faster. If shared files are
routinely opened for update on a multi-user system, users can become hopelessly
record-locked for extended periods of time.

Use the special “@ file in update mode with extreme care. To keep system overhead
low, record locking routines only check for conflicts on paths opened for the same
file. The “@” file is considered different from any other file, and therefore only
conforms to record lockouts with other users of the “@ file.

Read and ReadL.ine cause lock out of records only if the file is open in update mode.
The locked out area includes all bytes starting with the current file pointer and
extending for the number of bytes requested.

For example, if you make a ReadLine call for 256 bytes, exactly 256 bytes are locked
out, regardless of how many bytes are actually read before a carriage return is
encountered. EOF lock occurs if the bytes requested include the current end-of-file.

A record remains locked until any of the following occur:

* Another read is performed

* A write is performed

* Thefileis closed

» Avrecord lock SetStat is issued

Releasing a record does not normally release EOF lock. Any read or write of zero
bytes releases any record lock, EOF lock, or File lock.

Write calls always release any record that is locked out. In addition, a write of zero
bytes releases EOF lock and File lock. Writing usually does not lock out any portion
of the file unless it occurs at end of file when it will gain EOF lock.

Seek does not effect record locking.

There are two SetStat codes to deal with record locking: SS_Lock locks or releases
part of a file. SS_Ticks sets the length of time a program will wait for a locked
record. See the I$SetStat entry in OS-9 System Calls (chapter 2) for a description
of the codes.

0S-9 Technical Manual 7-11

File Security 0S-9 File System

File Security

Each file has a group/user ID that identifies the file’s owner. These are copied from the current process
descriptor when the file is created. Usually, a file’s owner ID is not changed.

An attribute byte is also specified when a file is created. The file’s attribute byte tells RBF in which modes
the file may be accessed. Together with the file’s owner ID, the attribute byte provides (some) file
security.

The attribute byte has two sets of bits to indicate whether a file may be opened for read, write, or execute
by the owner or the public. In this context, the file’s owner is any user with the same group ID as the file’s
creator. Public means any user with a different group ID.

Whenever a file is opened, access permissions are checked on all directories specified in the pathlist, as
well as the file itself. If you do not have permission to read a directory, you may not read any files in that
directory.

Any super-user (a user with group ID of zero) may access any file in the system. Files owned by the super-
user cannot be accessed by users of any other group unless specific access permissions are set. Files
containing modules owned by the super-user must also be owned by the super-user. If not, the modules
contained within the file are not loaded.

CAVEAT: The system manager should exercise caution when assigning group/user IDs. The RBF File
Descriptor stores the group/user ID in a two byte field (FD_OWN). The group/user ID that resides in the
password file is permitted two bytes for the group ID and two bytes for the user ID. RBF only reads the
low order byte of both the group and user ID. Consequently, a user with the ID of 256.512 is mistaken for
the super user by RBF.

End of Chapter 7

7-12 0S-9 Technical Manual

0S-9 File System NOTES

NOTES

0S-9 Technical Manual 7-13

